Fare scuola nella classe digitale
Tecnologie e didattica attiva fra teoria e pratiche d’uso innovative
Valeria Zagami
Fare scuola nella classe digitale

Tecnologie e didattica attiva fra teoria e pratiche d’uso innovative

Valeria Zagami
Introduzione. Dallo smartphone alla LIM: la parentela delle interfacce

di Stefano Penge

1. La tecnologia a scuola: contesti e scenari di riferimento
 1.1. Premessa 11
 1.2. Il quadro legislativo 11
 1.3. I presupposti teorici: dal paradigma comportamentista a quello costruttivista 14
 1.4. L’esperienza delle scuole nuove: le ragioni di un cambiamento 16
 1.5. Tecnologie come ambienti semantici di collaborazione 18
 1.6. Istruzione programmata o risoluzione sintetica 19
 1.7. Per una costruzione attiva del sé .. 21
 1.8. La formazione dei docenti. Le TIC e le nuove generazioni 23
 1.9. LIM, la tecnologia più diffusa nelle classi 34

2. Buone pratiche a confronto
 2.1. Premessa 45
 2.2. L’esperienza di MARINANDO 46
 2.2.1. La scuola vista da uno schermo: nascita ed evoluzione del progetto 47
 2.2.2. Sviluppo di un modello e dispositivi tecnologici utilizzati 48
 2.2.3. Spunti di riflessione 49
 2.2.4. Di che cosa ha bisogno la scuola? 51
 2.3 Un computer per ogni studente
 2.3.1. La tecnologia usata 53
 2.3.2. Gli attori della sperimentazione 54
 2.3.3. L’esperienza vista da vicino 55
 2.3.4. Le origini del progetto 56
 2.3.5. La condivisione come valore aggiunto dell’esperienza formativa 58
 2.3.6. Un computer a misura di bambino: come cambia la didattica in classe. 60
 2.3.7. Learning by doing 62
 2.3.8. Comunicazione sincrona: la chat come strumento di lavoro 64
 2.3.9. Lo stato dell’arte: un setting altamente strutturato 65

Indice
2.4. Uno scenario in movimento ... 77
2.4.1 Il banco interattivo: opportunità e vantaggi di una desemantizzazione dello spazio scolastico ... 77
2.4.2 La creazione di attività didattiche connessse all’uso del banco interattivo 80

3. La valutazione della competenza digitale:
 presupposti e modelli di riferimento .. 83
 3.1. Premessa ... 83
 3.2. Un possibile metodo di valutazione: l’albero digitale ... 84
 3.2.1. La natura tridimensionale della competenza digitale .. 84
 3.2.2. Come costruire e rappresentare la competenza digitale in una prospettiva dinamica/operativa ... 86
 3.2.3. Analisi dello strumento .. 88
 3.2.4. L’albero, strumento di rappresentazione figurativa ... 89
 3.3. Il portfolio come strumento di lavoro work in progress .. 93
 3.3.1. Come orientare alla consapevolezza ... 93
 3.3.2. Process-folio strumento significativo .. 94
 3.3.3. Il portfolio come pratica di assessment ... 96

Appendice ... 99

1. **Focus group** con i protagonisti della sperimentazione
 “Un computer per ogni studente” ... 99

2. Incontro con gli esperti ... 105
 2.1. Intervista a Paola Limone (1° settembre 2010) .. 105
 2.2. Intervista ad Antonietta Lombardi (1° settembre 2010) ... 108
 2.3. Intervista a Giuseppe Moscato (4 ottobre 2010) .. 109

Glossario dei principali termini informatici e specialistici 117

Bibliografia ... 121
Introduzione
Dallo smartphone alla LIM: la parentela delle interfacce
di Stefano Penge*

Nell’istruzione i cambiamenti arriveranno sfruttando i mezzi tecnici per eliminare la natura tecnica dell’apprendimento scolastico.

S. Papert

Oggi penso sia il momento di interrogarsi anche su come le singole incarna-

* Stefano Penge (Roma, 1963) è laureato in Filosofia della Scienza alla Sapienza Università di Roma. A partire dal 1992 si è occupato dell’utilizzo attivo delle tecnologie digitali nella gestione dei processi di apprendimento presso diverse Università italiane. Ha ricoperto incarichi di docenza in corsi universitari e post-universitari, in presenza e a distanza, è autore di diversi saggi sul tema ma anche progettista di software didattici e piattaforme di apprendimento online.
zioni di ogni medium digitale si imitino e si richiamino fra loro a livello di interfacce e funzionalità. Così facendo, semplificano la transizione dall’ignoto al noto; poggiano su metafore e abitudini già inveterate, facilitano l’acquisizione di nuove funzionalità, ma si portano dietro anche qualche traccia del vecchio “modo d’uso” e, a volte, introducono nuove difficoltà. La LIM (Lavagna interattiva multimediale) non sfugge a questo destino, e forse la sua natura si capisce meglio in quest’ottica sistemica.

La diffusione della LIM nelle scuole italiane, grazie ai piani nazionali e all’azione dell’ANSA (Agenzia nazionale per lo sviluppo dell’autonomia scolastica), è andata avanti a partire da quel lontano 2006 in cui è stata introdotta ufficialmente a livello nazionale. La reazione degli insegnanti verso la LIM fu piuttosto negativa: fastidio, imbarazzo, incomprensione. Se era chiaro che la LIM andava a sostituire la lavagna (quindi una parte dell’attrezzatura di classe di pertinenza del docente), non si capiva bene perché usarla, se non per catalizzare l’attenzione dei ragazzi sul contenuto della lezione anziché sul suo attore principale. Alcuni hanno sostenuto che non c’è nulla che si faccia con una LIM che non potrebbe essere fatto con un proiettore e uno schermo. Ma senza arrivare a tanto, che cosa differenziava immediatamente la LIM da un grosso televisore LCD, dal costo molto inferiore? Il fatto che si potesse toccare con le dita. Un aspetto che non attirava per niente il docente nel 2006.

Oggi la disposizione d’animo verso la LIM è sensibilmente migliorata: anche l’insegnante meno integrato è interessato almeno a provare a usarla. Ben vengano libri come quello che state leggendo, che aiutano a evitare che il “nuovo” venga usato allo stesso modo del “vecchio”, suggerendo modelli avanzati e raccontando esperienze positive. Quello che è cambiato in questi pochissimi anni non è tanto la competenza tecnica del docente ma proprio la sua apertura mentale: l’insegnate non si è limitato a comprendere le possibilità che un setting tecnologico più avanzato del trittico “cattedra-lavagna-carta geografica” può schiudere per la didattica, ma finalmente di questo setting non ha più paura, lo comincia a sentire suo ed è disponibile a sperimentarlo. Sospetto che la vera causa di questo mutamento di prospettiva non sia affatto la formazione tecnica (a cura dell’ANSA, degli ex IRRE – Istituti regionali ricerca educativa – o dei distributori italiani delle LIM). Penso si possa riconoscere in questo cambiamento un effetto collaterale di un fenomeno apparentemente lontano: quello della diffusione anche tra gli adulti degli smartphone dotati di touch screen.

Se guardiamo dentro uno smartphone, capiamo che fa parte a pieno titolo della famiglia dei dispositivi digitali. Dentro a un telefono digitale vengono utilizzati chip generici, programmati e riprogrammabili, che non sono diversi da quelli di un computer o di una reflex. Questo abbassa i costi di produzione e
permette di utilizzare software comuni, a partire dai sistemi operativi come Android. La novità più direttamente percepibile, che differenzia uno smartphone dagli altri telefoni, è però l’interfaccia: una delle innovazioni più importanti e trasversali che ha un enorme impatto sull’utente e ha contribuito tra l’altro a creare quel digital divide che mette in difficoltà un utente un po’ anziano di fronte a un bancomat moderno o a un risponditore automatico. Con le icone sullo schermo LCD (mutuate dalle interfacce dei PC), si può navigare, inizialmente muovendo un puntatore tramite dei pulsanti, e poi finalmente attraverso un touch screen, che permette la selezione diretta dell’icona con un dito o un pennino apposito. E alla fine arrivano le gestures, la possibilità di sfruttare il trascinamento, di utilizzare due dita per dare comandi diversi. Gli ultimi telefoni in circolazione – mentre scrivo queste righe – assomigliano a specchietti da borsetta: sono parallelepiedi di plastica con un lato occupato interamente da un grande display.

Secondo un recente studio di Nielsen, il 97% degli italiani ha un cellulare, il 62% possiede uno smartphone; la maggioranza degli utenti si colloca nella fascia 35-64 anni. È sempre più facile vedere in luoghi pubblici una signora di mezza età che al richiamo di una suoneria improbabile cerca affannosamente nella sua borsetta un telefono 13 x 17 su cui, una volta trovato, comincia a trascinare le dita. Non è imbarazzata, si muove con agilità tra i diversi gruppi di icone, passa da un’applicazione all’altra con una facilità impensabile fino a poco tempo prima. Questa stessa signora, una volta entrata in classe, non ha più difficoltà a muoversi tra i diversi menu della LIM, che in fondo è un telefonino un po’ più grande. Ha imparato le logiche d’uso di queste interfacce in un ambito personale ed è pronta a trasferirle in quello lavorativo.

Insomma non sono – per una volta – i nativi digitali a dettare l’agenda dell’introduzione delle tecnologie nella scuola, ma gli immigrati. La LIM, grazie al suo apparentamento con gli smartphone, i tablet e i lettori di e-book, sia in termini di costituzione interna che di logica d’uso, diventa così un dispositivo famigliare anche per il docente. Comprendere questo legame è utile per capire e progettare degli usi “sostenibili” delle LIM – o, se è per questo, di ogni altro dispositivo digitale – anche all’interno della scuola. È una storia di falsi progressi, di errori, di innovazioni centrate non sull’utente ma sulla disponibilità di tecnologie da campi affini. Una storia che ci dovrebbe insegnare a gestire l’inserimento delle innovazioni in maniera più cauta, tenendo conto di ciò che accade in campi limitrofi, facendo attenzione alla reazione emotiva, oltre che a quella cognitiva, di chi dovrà usarli. E ci dovrebbe stimolare a pensare sempre ai media come un sistema, in cui nessuna parte può essere pensata escludendo le altre. Che è appunto quello che l’autrice di questo libro si propone di fare.
Ringraziamenti

Questo volume è il frutto di un percorso evolutivo sperimentale che ha coinvolto la presenza di numerosi specialisti del settore, che da anni ormai svolgono attività importanti nell’ambito dell’inserimento delle TIC (Tecnologie della comunicazione e dell’informazione) nella scuola. Sono grata a tutti gli interlocutori di spessore che ho avuto la fortuna di incontrare in questo viaggio metaforico: gli insegnanti, gli esperti (spesso e purtroppo precari) che lavorano in contesti ministeriali e sono impegnati nell’avvicendarsi di sperimentazioni avanzate e complesse; i professionisti che, all’interno di realtà aziendali, si occupano di formazione e valutazione; i docenti universitari e soprattutto i ricercatori afferenti all’ambito delle scienze sociali che credono nella forza delle loro idee e del lavoro che svolgono, assumendosi la responsabilità di fare ricerca – nonostante le difficoltà – in nome di uno sviluppo vitalistico che sia portatore di un progresso sano.

Grazie alla disponibilità intellettuale dei miei interlocutori ho avuto il privilegio di esplorare una dimensione dialogica nuova, fatta di parole e azioni pregnanti che, a distanza di tempo, si manifestano ancora alla mente di chi ne ha frutto. È stato grazie a questi incontri che il dialogo è diventato il vero protagonista delle fasi di ricerca che hanno assunto il valore di una fucina germinante di idee e di dimensioni multipropagginate nuove, sostenute da un impianto metodologico rigoroso e ben strutturato.

Un ringraziamento importante è dedicato a Paola Limone e Antonietta Lombardi che mi hanno accolta in classe con grande entusiasmo e pazienza: la loro apertura mentale verso il nuovo è stata indispensabile per garantire la mia presenza durante l’attività svolta in aula e per conferire rigore scientifico alla fase sperimentale di ricerca condotta sul campo. Ringrazio ancora in modo particolare Stefano Penge senza il cui apporto umano, professionale e intellettuale oggi questo lavoro non sarebbe lo stesso; Morena Terraschi per il confronto e il dialogo pregnante su una visione moderna e dinamica della formazione. Un ringraziamento davvero speciale è rivolto a Gaia e Martina Malerba che, senza riserva alcuna, mi hanno permesso di osservare la realtà indagata attraverso la pluralità dello sguardo che caratterizza le nuove generazioni, consentendomi di restituire al lettore la difficile rappresentazione di una materia dalla natura callidoscopica.

Oggi, più che mai, abbiamo bisogno di misurare l’educazione secondo parametri nuovi, che superino un modello restrittivo che induce a relegare le pratiche scolastiche a prestazioni prevalentemente burocratiche, anziché riconoscere ai docenti il compito propriamente umano e prioritario di educatori in senso lato.
A Tina,
che si è assunta la responsabilità
di abbracciare la professione docente
come un mestiere di vita
una missione

A mia madre,
che ha fatto di me la persona
che sono diventata

Grazie
con Amore
1. La tecnologia a scuola: contesti e scenari di riferimento

L’inconscio accetta il simbolo e la metafora, dando loro la stessa importanza che darebbe a un fatto reale.

A. Jodorowsky

1.1. Premessa

In questo capitolo tracceremo lo scenario teorico di riferimento, metodologico ed epistemologico, che consente di mettere in atto dinamiche didattiche diverse da quelle usualmente applicate nella quotidianità scolastica poiché potenziate dall’inserimento delle tic (Tecnologie della comunicazione e dell’informazione). Come sottolinea Mario Morcellini, studioso e professore ordinario di Sociologia dei processi culturali e comunicativi presso “La Sapienza” di Roma, le tecnologie della comunicazione sono inerentemente educative:

I mezzi di comunicazione non consentono soltanto un arricchimento della conoscenza in virtù della possibilità di aggiornamento che offrono, ma diventano esperienza reale di apprendimento e occasione di crescita soggettiva, poiché contribuiscono a stimolare processi cognitivi, influenzando i modi di comunicare e di interagire. In tal senso, i media assumono progressivamente anche una valenza educativa.

1.2. Il quadro legislativo

Dalla metà degli anni Ottanta l’Unione europea ha avviato una politica sensibile alle tematiche connesse alla società dell’informazione attraverso l’impulso ad attività di ricerca e sviluppo nel settore della tecnologia dell’informazione e della comunicazione, e alla liberalizzazione delle telecomunicazioni. Una tappa importante del percorso è stata la pubblicazione nel 1993 del Libro Bianco, Crescita, competitività e occupazione, il cosiddetto “rapporto Delors”, in cui si enfa-

tizza la necessità e l’urgenza di porre lo sviluppo della società dell’informazione come base per rivitalizzare l’economia europea, creare nuovi mercati e posti di lavoro e accrescere il benessere dei cittadini. Dopo la pubblicazione del Libro Bianco, nel giugno 1994 è stata presentata al Consiglio europeo di Corfù una relazione dal titolo *L’Europa e la società dell’informazione globale*, nota come il “rapporto Bangemann”, che contiene raccomandazioni sul possibile contributo dell’Unione europea alla definizione di un quadro normativo per la società dell’informazione, con risvolti sul piano sociale e tecnologico. Ciò che noi siamo soliti definire “società dell’informazione” ha la sua più completa manifestazione pubblica in Internet che, infatti, rappresenta l’ultimo stadio dell’evoluzione di un modello socio-organizzativo caratterizzato dal massimo livello di interconnessione e interdisponibilità delle risorse informative, liberamente accessibili.

Per creare la suddetta “società dell’informazione per tutti”, nel 1999 la Commissione europea ha avviato appunto l’iniziativa *e-Europe*, un programma ambizioso destinato a diffondere le tecnologie dell’informazione e della comunicazione, inserendo massicciamente nelle scuole europee l’uso di Internet e delle risorse multimediali. I principali obiettivi dell’iniziativa sono stati e sono:

- fare in modo che ciascun cittadino, ciascuna abitazione, scuola, impresa e amministrazione entri nell’era digitale e disponga di un collegamento online;
- creare in Europa la padronanza degli strumenti dell’era digitale, con il sostegno di una cultura imprenditoriale pronta a finanziare e a sviluppare nuove idee;
- garantire che l’intero processo non crei emarginazione, ma rafforzi la fiducia dei consumatori e potenzi la coesione sociale.

Per conseguire tali obiettivi la Commissione europea propone delle azioni prioritari da attuare grazie all’impegno congiunto della Commissione, degli Stati membri, dell’industria e dei cittadini europei. Per permettere ai giovani europei di fare parte a pieno titolo dell’era digitale è necessario che la cultura digitale diventi una delle conoscenze di base in ambito educativo; di conseguenza è indispensabile far entrare Internet e le risorse multimediali nelle scuole, e adeguare l’istruzione alle esigenze dell’era digitale.

Lo scenario descritto apre una nuova prospettiva ben augurante per la scuola, in quanto istituzione preposta a garantire un’istruzione adeguata e al passo con i tempi. La scuola, essendo una delle maggiori agenzie di socializzazione, non può esimersi dall’aprire le porte alle tecnologie. Affinché il progetto ambizioso sopra descritto si possa inverare, occorre mobilitare sinericamente

più spinte innovative, sostenute dalle varie istituzioni di riferimento, e in primis fra tutte dalla scuola. Lavorando in questa direzione, il concetto ideale di società dell’informazione e della comunicazione acquisterà caratteri sempre più chiari e distinti. Come sostiene Morcellini, la comunicazione riveste un ruolo di fondamentale importanza per aiutare le istituzioni educative a recuperare la propria mission socioeducativa. A tal proposito riportiamo di seguito un estratto di particolare interesse:

L’attenzione progressivamente si sposta dalla prospettiva giovanile al senso dell’educazione moderna, cercando di analizzare come gli strumenti e i linguaggi della comunicazione, spesso causa di gap socioculturali fra giovani e adulti, possono trasformarsi in strumenti di riscatto e di contatto per il ripristino della mediazione. L’interpretazione moderna dell’educazione si avvale certamente delle definizioni dell’UNESCO e dei suoi postulati per arrivare ad abbracciare nuovi significati e ruoli sociali nella società della conoscenza; essa inoltre riconosce negli strumenti e nei linguaggi della comunicazione indicatori concreti ed efficaci del sapere, saper fare e saper essere. La scuola, di fronte a una condizione di delegittimazione del proprio statuto e dei suoi attori, può riscattare la propria missione attraverso la sua ricontestualizzazione e apertura verso tre strategie di intervento: la ricerca, la relazione e la riforma.

La scuola, luogo di formazione e apprendimento, vuole dismettere i panni edulcorati dei contenuti analogici e sequenziali, per accogliere, con più entusiasmo rispetto al passato, i germi copiosi del digitale. A questo punto ci poniamo delle domande fondamentali e allo stesso tempo interessanti, considerate tali perché enfatizzano i veri nodi critici delle questioni affrontate nel nostro lavoro. La scuola italiana è pronta a fare tutto questo? E gli insegnanti, sono pronti? Ma soprattutto che cosa ne pensano?

In un passato non troppo lontano la scuola aveva relegato gli spazi degli insegnamenti tecnologici in un’area circoscritta e ben delimitata, depositando i computer (nei casi più fortunati si arrivava a un numero di 20 in totale) in aule (o laboratori d’informatica) isolate dalle classi, in cui invece avvenivano le lezioni frontali di tutti i giorni. Questo atteggiamento rigoroso e di contenimento delle risorse elettroniche rende complicato tramutare la società contemporanea in una società dell’informazione per tutti. Si manifesta per cui l’urgenza di fare qualcosa di reale: tramite l’iniziativa e-Europe si è cercato, se non di rendere concreto materialmente, almeno di avviare formalmente un cambiamento pronto a coinvolgere e sconvolgere la scuola in quanto istituzione, e di conseguenza la didattica e la sua naturale riprogettazione. Didattica e riprogettazione sono i termini chiave di questo lavoro nel corso del quale vengono presentate alcune

sperimentazioni didattiche a testimonianza dei cambiamenti a favore dell’inclusione di devices digitali, come, ad esempio, l’inserimento in classe di un computer da usare tutti i giorni. Potrà sembrare un assurdo concettuale porre la dimensione tecnologica sullo sfondo di un lavoro teorico, almeno per il momento; ma si tratta soltanto di una scelta funzionale, una dichiarazione di intenti, volta a stabilire non l’importanza della presenza di uno strumento tecnologico in quanto tale, ma l’assoluta necessità di cambiamento, per quanto riguarda la natura epistemologica della didattica. Le nuove tecnologie offrono la possibilità di essere interpretate come occasione propizia per guardare all’impostazione offerta dal paradigma costruttivista, in cui il docente orienta il processo di apprendimento del discente in un sistema di apprendimento costruito insieme. Ricordiamo, come sostiene Valerio Eletti, docente di Ideazione e progettazione di prodotti multimediali presso l’Università “La Sapienza” di Roma, che l’apprendimento è un processo dinamico nel quale il soggetto ha un ruolo fondamentale:

Il costruttivismo esaspera le posizioni cognitiviste considerando la nozione di realtà come costruzione mentale non solo intrasoggettiva ma anche intersoggettiva. Le percezioni di un individuo della realtà che lo circonda sono, cioè, il risultato non solo dell’attività cognitiva personale ma anche della relazione e interazione con gli altri individui. Per il costruttivismo l’apprendimento è un processo dinamico e attivo messo in atto dal soggetto per l’acquisizione del sapere. Il soggetto che apprende riveste, al contrario di quanto è interpretato nel comportamentismo, un ruolo attivo, che lo rende protagonista delle scelte e dei percorsi attuati per imparare.

1.3. I presupposti teorici: dal paradigma comportamentista a quello costruttivista

È necessario porre una distinzione metodologica tra quello che viene definito apprendimento formale e apprendimento concreto. Come scrive Seymour Papert, teorico di riferimento la cui fama è conclamata a livello internazionale:

La caratteristica fondamentale del pensiero è l’intuizione; il pensiero logico formale è una costruzione artificiale, anche se spesso enormemente utile: la logica sta alla base non al vertice. La supervalutazione dell’astratto blocca il processo pedagogico sia nella pratica sia nella teoria secondo modalità reciprocamente interagenti. Nella pratica dell’istruzione l’enfasi sul sapere astratto-formale costituisce un impedimento diretto all’apprendimento e dal momento che certi bambini, per motivi dipendenti dalla loro personalità, cultura, sesso e

4. “C’è apprendimento solo in quella situazione in cui il controllo del processo educativo sia progressivamente rilasciato dall’ambiente per essere conquistato dal soggetto” (M. Terraschi, S. Penge, Ambienti digitali per l’apprendimento, Anicia, Roma 2004).
5. V. Eletti, Che cos’è l’e-learning, Carocci, Roma 2002.
Papert, dunque, sostiene che porre l’enfasi sul sapere astratto-formale è un limite all’apprendimento. Argomenta la sua tesi affermando che la supervalutazione dell’astratto blocca il processo pedagogico, relegandolo a un paradigma teorico di riferimento superato, quello di matrice comportamentista, che trova la sua ragion d’essere nel concetto di “istruzionismo”. Il modello comportamentista si basa sulla concezione secondo cui il comportamento è l’insieme delle reazioni adattive, oggettivamente osservabili, che un organismo innesca in risposta a degli stimoli, anch’essi oggettivamente osservabili, e provenienti dall’ambiente nel quale vive. I termini della riflessione indirizzano la nostra attenzione sui processi di adattamento che l’uomo mette in atto interagendo con l’ambiente circostante. Tale impostazione trova i suoi massimi esponenti in Edward Thorndike, Ivan Pavlov e Burrhus Skinner, considerati come i “padri fondatori” delle teorie comportamentiste.

Proprio Skinner, in Science and human behavior del 1953, sistematizza la sua riflessione attraverso una serie di esperimenti condotti tramite un congegno progettato per le sue ricerche, chiamato Skinner box. Si tratta di una scatola (gabbia per topi o piccioni) di dimensioni variabili predisposta per contenere un animale che riceve una ricompensa ogni qual volta compie correttamente un’azione prestabilita. Tale meccanismo produce nell’animale uno stato di soddisfazione indotta che agisce come elemento di rinforzo per la connessione stimolo-risposta. Skinner, grazie alle ricerche avviate con il suo team di ricercatori e insieme ai numerosi esperimenti condotti in laboratorio, apre la via al perfezionamento dell’istruzione programmata.

A partire dagli anni Sessanta le teorie comportamentiste sono affiancate da nuovi impulsi che sfociano nel paradigma di riferimento di stampo cognitivistico, avviando così il distacco da un’idea passiva dell’apprendimento. Il cognitivismo basa i suoi fondamenti su una concezione che enfatizza il concetto di “mappa cognitiva”, ovvero una rappresentazione mentale che l’individuo costruisce entrando in relazione con l’esterno. Questo paradigma dà risalto alla componente mentalistica, alle capacità cognitive e al comportamento del soggetto che, attraverso l’apprendimento, modifica e organizza le strutture mentali in nuovi schemi concettuali; per i cognitivisti l’individuo tratta le informazioni intrecciandole tra loro, dando vita a una struttura articolata. Gli schemi cognitivi da semplici diventano più complessi, come se si costruisse una rete che si infittisce sempre di più man mano che si determinano le relazioni tra i concetti; pertanto l’apprendimento viene definito come una modificazione all’interno di tali strutture mentali dell’individuo.

Dalle teorie cognitiviste si sviluppa un altro paradigma di fondamentale importanza che ha inizio negli ultimi decenni del secolo scorso, il costruttivismo. Tale orientamento esaspera le posizioni cognitiviste ampliando il concetto di “attività cognitiva personale”; definendola infatti, come il frutto della relazione e interazione con gli altri individui. Il soggetto che apprende riveste un ruolo attivo che lo rende protagonista delle scelte e dei percorsi attuati per imparare: l’apprendimento è quindi un processo dinamico messo in atto dal soggetto. In questa nuova ottica, che supera le precedenti posizioni, si rivendicano come principi fondanti la piena autonomia dei soggetti, l’interazione tra di essi e la negoziazione sociale.

L’esecuzione meccanica di un’operazione di matrice skinneriana ha poco a che fare con la pedagogia e l’apprendimento in genere; essa non può essere considerata condizione sufficiente per garantire risultati positivi in ambito educativo e didattico. La via per un apprendimento migliore non è quindi il miglioramento dell’istruzione skinneriana, non è la programmazione del compito che garantisce l’efficacia del risultato. Per questa ragione si afferma in modo vincente un modello applicativo di stampo costruttivista che si interroga sulla dimensione del “come e che cosa insegnare”, che dismette il veto sacrale della trasmissione nozionistica fine a se stessa, per inglobare nelle metodologie di insegnamento la costruzione attiva della conoscenza. Alla conservazione del sapere, tipica di un’impostazione didattica trasmissiva, si oppongono scenari caratterizzati da espressioni chiave come costruzione e condivisione della conoscenza e negoziazione sociale. Come sostiene ancora Papert:

L’istruzione tradizionale codifica ciò che ritiene che i cittadini debbano sapere e si assume il compito di alimentare i bambini con quel pesce. Il costruzionismo poggia sull’assunto che i bambini faranno meglio a scoprire da sé (pescare) le specifiche conoscenze di cui hanno bisogno. Il tipo di sapere di cui hanno soprattutto bisogno i bambini è quello che li aiuterà ad acquisire altro sapere.

1.4. L’esperienza delle scuole nuove: le ragioni di un cambiamento

L’esigenza di un rinnovamento in grado di superare determinati schemi strutturali di matrice comportamentista affonda le sue radici in tempi lontani e trova la sua acme nel movimento cosiddetto delle “scuole nuove”. Tale movimento ha inizio alla fine dell’Ottocento e continua ad animare la scena pedagogica fino

7. Papert, I bambini e il computer, cit.
8. Riportiamo fedelmente la traduzione del testo di Papert, ma interpretiamo il termine sempre nell’ambito teorico del costruttivismo.
alla prima metà del xx secolo. Caratteristica peculiare delle scuole nuove è il fervore sperimentale che generò nuovi impulsi innovativi e cambiamenti nella prospettiva pedagogico-educativa. Un esempio è dato dall’importanza destinata alla prassi e alla dimensione laboratoriale dell’attività didattica, fino ad allora poco considerata. Le scuole nuove, in particolare quelle italiane, erano animate dall’idea democratica, in parte intrisa di spirito filocattolico, di consentire a tutti di avvantaggiarsi dei benefici prodotti dal conseguimento di una buona istruzione personale, finalizzata al miglioramento della qualità della vita intellettuale e materiale. È ormai celebre, rimasta impressa nella memoria collettiva degli esperti di settore, la figura autorevole di don Lorenzo Milani e la sua famosa *Lettera a una professoressa*. La necessità di cambiamento della fisionomia contemporanea dell’istituzione scolastica è un’esigenza che ha radici profonde; essa si avverte chiaramente nell’atto di accusa – espresso nella *Lettera* – nei confronti della scuola pubblica, definita classista e discriminatoria. È una voce forte che risuona come un manifesto di istruzione alternativa, comunitaria e di tutti. Questo primo tentativo è la dimostrazione tangibile di un impulso che si manifesta già nel passato e che spinge alla realizzazione di un modello di riforma che enfatizzi pratiche educative di tipo esperienziale.

Guardando all’oggi e alla diffusione massiccia del digitale, consideriamo il dato di fatto che le nuove tecnologie amplificano gli stimoli delle nostre percezioni e consentono di avere esperienza diretta di un fatto e di un fenomeno particolare. Grazie alla digitalizzazione dei formati è possibile trasmettere informazioni attraverso le più svariate metodologie di comunicazione: si può accedere a Internet con un telefono cellulare e leggere e-mail a un determinato indirizzo web o scaricando i messaggi su un client di posta elettronica; si possono effettuare download da Internet per scaricare video sui propri pc, tablet o lettori di file audio-video; o ancora condividere le foto personali o di un evento particolare all’interno di un blog; è possibile trasferire immagini da un dispositivo a un altro attivando funzioni come il bluetooth, ormai disponibile sulla maggior parte dei *devices* tecnologici. Le molteplici sollecitazioni provenienti dai dispositivi citati espongono i soggetti a diversi stimoli simultanei; sono input che definiamo per comodità di categorizzazione come “esperienziali”.

Negli ultimi anni grazie all’avviamento delle riforme comunitarie si è manifestata l’urgenza istituzionale di adeguarsi agli standard europei che emanano linee guida e orientamenti riformatori, come ad esempio la già citata iniziativa *e-Europe*. Ecco il nodo critico che ci proponiamo se non di sciogliere almeno di approfondire: indagare fino a che punto quella svolta educativa che i padri storici della pedagogia11 avevano già mostrato si possa manifestare oggi nel segno

di una convergenza virtuosa tra un bisogno di adeguamento alle novità sollecitato da istituzioni e politiche di vocazione sovranazionale, e l’evoluzione di un modello scolastico in sofferenza, che non è più in grado di soddisfare le aspettative contemporanee.

Assumiamo come assioma iniziale che la tecnologia non può essere considerata come un *deus ex machina*, ovvero come una struttura avulsa dal contesto educativo che improvvisamente appare nelle aule di scuola cercando di esaudire le migliori intenzioni, ma, nella maggioranza dei casi, generando disorientamento negli insegnanti e indifferenza negli alunni. Non è sufficiente l’inserimento in classe della tecnologia per creare un dialogo comunicativo ed educativo tra docenti e discenti, ma è opportuno un vero e proprio cambio di prospettiva. Senza il giusto approccio il mezzo tecnico non sarà in grado di migliorare il contesto educativo; e così, purtroppo, la lieta speranza di una società dell’informazione per tutti rischia di essere solo una chimera irrealizzabile. È da questo scenario di partenza che trae spunto l’ipotesi di lavoro che ha animato questo progetto di ricerca.

1.5. Tecnologie come ambienti semantici di collaborazione

Grazie all’inserimento delle tecnologie all’interno delle classi è possibile modificare scenari noti, riconfigurando lo spazio e le azioni che si consumano al suo interno. La scuola può fare un salto di qualità autoriformandosi, diventando la “scuola dell’esperienza”. Consideriamo una tecnologia digitale come un espediente in grado di stimolare e motivare gli allievi; interpretiamo i *devices* tecnologici come strumenti di acquisizione di una conoscenza consapevole, ovvero strumenti di esperienza\(^{12}\). La possibilità di fruire di contesti così connotati coinvolge in prima persona il soggetto e condiziona l’ambiente relazionale in cui egli compie la sua esperienza. Bisogna spostare quindi l’attenzione verso le modificazioni che avvengono per opera delle nuove tecnologie all’interno di tale contesto, dando la dovuta importanza alle relazioni che si creano tra gli attori dell’interazione e riconoscendo che sono caratterizzate da un atteggiamento incline alla cooperazione o alla collaborazione\(^{13}\). Uno scenario definito in questi termini è fortemente aggregante, cioè stimola la capacità di stare insieme e orienta il lavoro in modo produttivo, consentendo di privilegiare metodiche non sempre presenti nei sistemi di valutazione scolastica. Ci riferiamo a modalità che con-

templano il lavoro di gruppo, attività di ricerca e documentazione, condivisione di esperienze, confronto culturale: tutti momenti fortemente partecipativi, ad alto valore collaborativo e comunicativo. Attraverso la cooperazione e la collaborazione si alleggeriscono l’esasperato individualismo e l’eccessiva competitività, scoprendo nuovi modi di vedere le cose attraverso la relazione. In questo modo è possibile contribuire alla formazione del soggetto, che, tramite la scoperta di una sua capacità individuale, si sente motivato e rinforzato nella sua autostima personale. Così sarà un soggetto/alunno predisposto al dialogo e alla mediazione sociale, ma soprattutto più autonomo e capace di compiere negoziazioni e mediazioni sociali tipiche di chi ha acquisito delle competenze. Non più una conoscenza libresca, da spendere all’interno delle mura codificate dell’istituzione scuola, ma una formazione realistica, votata all’inclusione del soggetto/alunno all’interno delle “mura della vita”.

1.6. Istruzione programmata o risoluzione sintetica

Impartire agli studenti un’istruzione di tipo “meccanico”, che si limita a fornire loro le procedure per padroneggiare il funzionamento dei devices tecnologici e del software installato e più comunemente utilizzato, è una pratica che spesso non va oltre l’indicazione di come salvare un file sul desktop o come archiviare i documenti in cartelle differenti. L’inserimento dei media digitali in contesti educativi caratterizzati dalla prospettiva descritta è rappresentativo di un’imposizione che definiamo per semplificazione narrativa istruzione programmata. Tale espressione evoca alla mente paradigmi culturali di skinneriana memoria, nei quali è la trasmissione meccanica dell’informazione ad acquisire l’importanza principale nell’attività di apprendimento. È un approccio metodologico che lascia sullo sfondo i bisogni formativi peculiari dei singoli destinatari; spesso può risultare anche piuttosto noioso perché non incrementa il grado di attenzione e partecipazione di chi la subisce. I giovani contemporanei sono immersi in un mare magnum di stimoli e stentano, in genere, a seguire un’attività didattica orientata alla somministrazione di pacchetti di istruzione programmata, seppur in questo caso supportata da mezzi tecnologici.

L’inserimento dei media digitali in contesti educativi può avvenire anche attraverso un’altra strategia divergente da quella sopra descritta. Per semplificare la nostra analisi, la definiamo con l’espressione risoluzione sintetica; essa non è artificiosa e poco naturale come la precedente perché è basata sull’intuizione e sulla pratica esperienziale. Di questa fanno inconsapevolmente uso fin dai primi anni di vita i bambini quando affidano a pratiche di tipo senso-motorio il proprio approccio alla realtà. In età infantile vi è maggiore predisposizione ad ap-
prendere dai propri errori: osservando, provando e riprovando, si attivano in modo naturale meccanismi di autocorrezione.

Sulla base di questa impostazione, che fonda le sue radici nel paradigma costruttivista, il metodo didattico affidato all’uso delle tecnologie non dovrebbe limitarsi a fornire semplici istruzioni per capire il funzionamento degli strumenti, ma, piuttosto, stigmatizzare nella mente dei ragazzi che l’eventualità di poter accedere a risorse esterne al proprio sé rappresenta un valore aggiunto altamente significativo, spendibile sia all’interno sia al di fuori delle classi. Comprendere fino in fondo che avere accesso alle tecnologie significa possedere una sorta di passe-partout che, se usato con le dovute abilità, valorizza e dà spazio all’intelligenza, quella orientata alla risoluzione di problemi concreti e reali. Non ci riferiamo ai saperi acquisiti, certificati e misurati con scale di valori numerici sterili, rigidi e standardizzati, ma a quella propensione lungimirante che si realizza nel ricercare e selezionare strategie volte al superamento di momenti critici. Condizione necessaria affinché questa propensione si sviluppi è stimolare negli alunni uno stato d’animo che consenta loro di percepirsi come attori principali dell’esperienza fattiva che stanno vivendo, della loro personale esperienza di apprendimento.

Definire uno scenario così caratterizzato è certamente molto complesso e richiede una capacità di progettazione articolata, che non può essere paragonata alla comodità d’uso dei programmi didattici stilati in relazione a obiettivi formativi standardizzati. Per alimentare coscienze critiche e consapevoli, e non omologate nel pensiero, è necessario agire dall’interno, dall’istruzione e dall’istituzione che è preposta ad assolvere a questo compito; tenendo sempre presente che la questione assume caratteristiche morali di grande rilevanza per il singolo cittadino, per una costruzione attiva del proprio sé, e, di riflesso, del concetto di cittadinanza digitale.

Sorgono a questo punto degli interrogativi importanti, che ci inducono a riflettere su questioni etiche e sociali: siamo sicuri che la società attuale voglia formare una massa critica capace di gestire informazioni complesse e soprattutto in grado di scomporre consapevolmente messaggi mediatici? Questi sono interrogativi importanti e problematici per i quali occorrerebbe una trattazione approfondita ed esaustiva, oggetto di uno studio di più ampio respiro. Per il momento ci limitiamo a evidenziare degli spunti di riflessione, nel tentativo di sottoporre allo sguardo del lettore attento, affinché possa scorgere, questioni etiche, morali e sociali, per ora solo latenti, che prima o poi bisognerà affrontare.

14. Facciamo riferimento ai molteplici livelli di interpretazione, insiti nell’attività complessa di decodifica del messaggio emanato da un mittente.
1.7. Per una costruzione attiva del sé

Gli strumenti di Internet consentono di costruire secondo nuovi modelli e di ristrutturare le pratiche sociali di una comunità; la scuola, essendo appunto, una delle maggiori agenzie di socializzazione, non può non accogliere al suo interno tali pratiche. Se non riesce a includerle durante le normali ore curricolari, dovrebbe permettere per lo meno di arricchire il piano della sua offerta formativa dedicando ampio spazio ai momenti di sperimentazione innovativi. Come chiarisce Paul Watzlawick, teorico di riferimento noto a livello internazionale, «la comunicazione gioca un ruolo essenziale nella costruzione della realtà in rete». Cerchiamo quindi di definire la struttura intrinseca della rete e il suo funzionamento.

La rete si configura attraverso un assetto decentralizzato, generato dalla massa di milioni di utenti che vi interagiscono giornalmente, stabilendo le condizioni per la creazione spontanea di un ordine complesso e generale. La complessità di Internet è determinata, quindi, dall’ampio sistema di coordinamento tra molte coalizioni o molti spazi virtuali che non sono definiti geograficamente, ma piuttosto sono determinati dalla condivisione di una particolare funzione. È tipico di Internet consentire all’utente di partecipare, simultaneamente o in successione, a diversi gruppi legati a un interesse comune: ad esempio esperti di culture diverse; pazienti con particolari esperienze di malattie; studenti di università differenti accomunati da un iter didattico specifico. Dato che dialoghi interni ed esterni sono così intrinsecamente intrecciati, le diverse coalizioni cui lo stesso utente (studente) può partecipare non fanno altro che confermare, arricchire o indebolire le coalizioni già esistenti tra le varie posizioni del sé; come verrà illustrato più avanti (cfr. par. 1.7), il soggetto sperimenta più ruoli attraverso le relazioni e, in virtù di questo processo, modifica la sua interiorità e di conseguenza la sua identità. L’impatto con le nuove tecnologie scardina l’assetto interno del soggetto, ridefinendo categorie di riferimento, sia per la sua costituzione interiore sia per la sua crescita e maturazione. Si abbandona la concezione cartesiana di un “sé finito”, rappresentato concettualmente come qualcosa di interiore, immateriale e aspaziale, e il processo di costruzione del sé si complica e allo stesso tempo si arricchisce aprendosi a nuove dimensioni. In aperta contrapposizione con la visione di stampo cartesiano, sosteniamo che il sé sia spazializzato; secondo questa

15. L’argomento sarà trattato più diffusamente nel capitolo 2, perché alcune pratiche di “sperimentazione” sono state attuate da singole scuole lungo tutto l’arco dell’anno scolastico, con risultati positivi ed entusiasmanti.

conceputalizzazione lo spazio, il mondo materiale è fuori dal sé. Ovvero l’io è distribuito e può essere concepito come una dinamica molteplicità di posizioni che oscillano da un posizionamento all’altro, sperimentando diverse prospettive sul mondo, con alcune viste particolari a discapito di altre.

Nella prospettiva argomentata la parola “dialogo” è di fondamentale importanza poiché in misura sempre maggiore si configurano condizioni di un dialogo mediato soprattutto dalla relazione tra sé e gli altri. Stiamo definendo i tratti salienti di un paradigma di riferimento che si caratterizza per una dimensione triadica, inglobando al suo interno gli ambienti semantici tecnologici che sono sistemi di significazione, che agiscono alla stregua di luoghi sociali e cognitivi. La rete offre una socializzazione alternativa, una nuova agenzia in grado di innescare un processo di sense-making innovativo del proprio sé. Hubert Hermans, studioso di fama internazionale, noto per le sue teorie “di orientamento psicologico” riguardo alla natura costitutiva di un sé dialogico, pone l’accento sull’importanza del carattere sociale del sé sostenendo che:

Il sé ha una natura multivocale dove ogni voce rappresenta una posizione e ogni posizione rappresenta un’altra entità integrata nel sé, dunque ogni posizione è dotata di un’agentività che genera una continua riorganizzazione del sé.

Alla luce di questa teoria, si evince quanto sia fondamentale per la formazione di una coscienza sana ed equilibrata la presenza della relazione dialogica tra il sé personale dell’individuo e gli altri sé. Tale relazione può essere, inoltre, rimodellata dalla presenza della mediazione tecnologica che influisce in modo prepotente sulla formazione del soggetto in generale e, a maggior ragione, del soggetto discente. Lo studente, nello specifico, sente la necessità di confrontarsi con la dimensione dell’alterità, ma spesso non trova nell’istituzione scolastica un ambiente connotato in senso più strettamente esperienziale per poterlo fare.

19. «Con il termine posizionamento si fa riferimento al recente tentativo della psicologia di articolare un modo alternativo di leggere e comprendere la dinamica delle relazioni umane nell’ambito del paradigma socio-costruttivista. Questo paradigma si focalizza sull’idea di una realtà non data e oggettiva, ma costruita attraverso le attività mentali, di significazione delle esperienze, degli oggetti e degli individui in perenne interazione tra di loro» (B. M. Varisco, Costruttivismo socio-culturale, Carocci, Roma 2002).
20. Per una trattazione più diffusa cfr. Ligorio, Hermans (a cura di), Identità dialogiche nell’era digitale, cit.
23. È necessario che la scuola, come garante di un ruolo istituzionale, si assuma finalmente le sue responsabilità; è un dovere morale oltre che un diritto del cittadino che finanzia un servizio con il pagamento delle proprie tasse: allora che la scuola diventi un luogo di formazione e crescita pluridimensionale del soggetto e non un luogo dove si trasmettono saperi avulsi dai contesti storici in cui si vive.
Dobbiamo prendere atto del fatto che il dialogo con il mondo esterno e con noi stessi avviene in misura sempre maggiore a distanza, grazie anche alla tecnologia e alla sua capacità di ampliare la nostra portata dialogica. In quanto membri di un’ampia rete di scambi di comunicazione siamo esposti continuamente all’espandersi dello spettro di significati, valori, idee e operazioni mentali, e come partecipanti a tale rete abbiamo l’opportunità di essere sempre più multivoci. Dato che il sé dialogico funziona proprio in corrispondenza del punto di connessione tra dialoghi interiori e dialoghi rivolti all’esterno, le tecnologie finiscono per mediare anche i dialoghi privati, trasformandone gli scopi e i contenuti.

1.8. La formazione dei docenti. Le TIC e le nuove generazioni

Se analizziamo la cronologia di questi eventi, notiamo che le varie azioni europee rincorrono il miglioramento della qualità dell’istruzione attraverso l’impiego degli strumenti digitali, spostando sempre più in avanti nel tempo il suo effettivo raggiungimento. La causa di ciò non è legata alla diffusione del mezzo tecnologico, per lo meno non nel nostro paese: in base a quanto divulgato dall’indagine sulle risorse tecnologiche per la didattica nelle scuole italiane effettuata dal MIUR, nel corso del triennio 2001-2004 l’Italia ha colmato il divario nelle dotazioni informatiche alle scuole che la separava dagli altri paesi europei, e allo stato attuale si posiziona ai primi posti in questo settore, sempre in un contesto europeo. Non possiamo quindi sostenere che il LLP sia troppo utopistico – almeno idealmente – e che si scontri con realtà scolastiche inadeguate, se non altro dal punto di vista dell’allestimento tecnologico. Il dato numerico sulla dotazione degli strumenti risulta positivo, ma non abbiamo riscontri così rassicuranti in ambito statistico riguardo a che cosa accada effettivamente in classe in seguito alla fornitura delle dotazioni.

Come sostiene Paola Ferrera, insegnante ed esperta di progetti europei e di nuove tecnologie applicate alla didattica, nei vari atti e documenti ufficiali europei il concetto resta astratto e genericamente definito, sebbene in qualche misura riconducibile a “pratiche innovative” basate sulle TIC. Interpretando ancora i dati statistici, constatiamo che esisterebbe una spinta innovativa volta alla configurazione tecnologica della scuola pubblica, ma non risulterebbe ugualmente visibile e quantificabile il passaggio successivo, legato alle modalità di integrazione delle TIC nei sistemi d’istruzione. Sono forse da ricercare in questa causa le ragioni dello spostamento sempre più in avanti del miglioramento della qualità e dell’efficacia dei sistemi di istruzione scolastica? Il problema rimane aperto e comunque insoluto, perché mentre è possibile documentare l’allestimento delle classi con tecnologie di base o avanzate, non è possibile sciogliere l’enigma sull’uso che ne verrà fatto in seguito. Lo scenario si complica perché il raggiungimento dell’obiettivo di migliorare la qualità dell’istruzione è dilatato sempre più nel tempo, a testimonianza del fatto che non sono state esplicate in modo esaustivo né le procedure generali della sua realizzazione né le linee guida dirette alle realtà scolastiche considerate nelle loro specificità. Si possono rintracciare in quest’analisi le ragioni di un impatto critico non ancora così positivo come invece era stato auspicato dai proponenti comunitari.

Sebbene l’etichetta “pratiche innovative basate sulle TIC”, protagonista dei documenti europei citati, chiarisca il concetto che l’inclusione in ambienti di

26. Per fare una comparazione critica bisognerebbe confrontare i dati italiani con quelli europei in dettaglio.
dattici delle tecnologie incrementa la qualità del processo formativo, non ci sono invece riferimenti chiari a un modello che esemplifichi tempi e modalità sulla formazione da destinare agli insegnanti che si troveranno in classe i nuovi *devices*. Disporre di un format di riferimento prescrittivo per orientare gli interventi formativi avrebbe impedito di lasciarli al caso o limitarli a una fruizione di occasioni sporadiche, che spesso si riducono a brevi corsi di aggiornamento (uno, al massimo due incontri) accessibili solo a pochi insegnanti. Ricaviamo l’impressione che l’atteggiamento entusiasta riscontrato nei vari progetti europei sia ancora ben lontano dal tradursi in realtà. Sarebbe stato più efficace entrare nel merito della questione, considerando come parallela e funzionale al concetto di miglioramento della qualità dell’istruzione la problematica relativa alle “istruzioni per l’uso”, alla formazione della classe docente. L’ambito della formazione degli insegnanti sulle TIC rappresenta un supporto reale per acquisire pratiche e metodiche che esulano dalla conoscenza peculiare della disciplina personale di insegnamento. Tale ambito rappresenta una risorsa indispensabile, se le informazioni di carattere metodologico sono accompagnate anche da un breve addestramento tecnico, finalizzato all’appropriarsi delle funzioni di base delle tecnologie digitali e di rete.

Il punto nevralgico sta nel definire un obiettivo pratico: offrire una formazione di ampio respiro basata su strategie di metodo che consentono al docente di gestire unità didattiche rielaborate in relazione al contesto classe nel quale si è chiamati a operare e modificabili all’occorrenza. Una visione moderata, capace di includere sia la dimensione più strettamente tecnica sia quella metodologica è la formula vincente da adottare per rincuorare gli animi e non sollecitare paura negli insegnanti di “vecchio stampo”, che faticano – sia per ovvie ragioni di distanza generazionale sia per diffidenza personale verso il mondo delle tecnologie digitali[28] – a stare al passo con i tempi.

Se la scuola pubblica non si attrezzera per percorrere questa via, risulterà essere lontana da una modernità ormai in continuo cambiamento, «accelerata e liquida», come la definisce il filosofo e comunicatore Zygmunt Bauman[29]. Sarà condannata a restare fuori dal tempo in un’epoca caratterizzata dalla dissoluzione delle istituzioni e dalla crisi delle certezze dell’uomo moderno: il sociologo polacco parla, infatti, di una «società dell’incertezza», dovuta ai nefasti risvolti della globalizzazione. L’assenza di punti di riferimento[30] che orientino i giovani

28. È del tutto plausibile la diffidenza generata in determinati insegnanti dall’avvento del digitale. Chi è nato e cresciuto nell’epoca dell’analogico ha sviluppato conseguentemente una *forma mentis* sequenziale per cui opposta alla natura intrinseca del digitale stesso.
d’oggi sembra essere un luogo comune, un’etichetta stereotipata, che però rispecchia una realtà largamente diffusa. Il mondo dei ragazzi si trova immerso in una molteplicità di stimoli e scenari nei quali essi sono sempre più indotti a sperimentare esperienze forti, ad alto contenuto partecipativo. Come rileva Morcellini, una nuova tendenza caratterizza i consumi culturali dei giovani: frequentare contesti sociali connotati da una spiccata dimensione sensoriale dove l’esperienza è la vera protagonista:

I giovani ricercano la scoperta e la ricerca di esperienze collettive e condivise, in cui si recupera la dimensione della relazione, della partecipazione diretta e del coinvolgimento plurisensoriale attraverso l’esperienza.

La massiccia diffusione di Facebook e di altri social network consente a chi li frequenta di fruire di contesti sociali pluridimensionali. La possibilità di sperimentare situazioni lontanissime da quella che per confronto può essere definita un’inattività congelata in vitro nell’ambito della scuola fa degli ambienti di socializzazione digitali oggetti ambiti e ricercati durante le ore extrascolastiche.

I molteplici contesti semantici generati dalle relazioni in chat in modalità sincrona, come ad esempio accade nelle interazioni che avvengono attraverso software di messaggistica immediata, e la possibilità di condividere opinioni se non emozioni in un blog o in un forum, insieme all’estremo coinvolgimento esperito nei mud, scenari di gioco che consentono di partecipare attraverso l’alternanza di giochi di ruolo, sono tutte esperienze fortemente attrattive che inducono i giovani a essere frequentatori assidui di questi ambienti digitali.

Anche YouTube consente di esplorare tutte le dimensioni elencate; inoltre fornisce agli studenti un nuovo modello di rappresentazione di sé, permette al soggetto di “esserci” attraverso le sembianze più disparate, ad esempio, filmando la propria persona e valorizzando una forma di narcisismo interiore, per porsi al centro dell’attenzione dei compagni di classe e del pubblico della rete. Tutte le attività preliminari all’inserimento di un video su YouTube consentono di esprimere una forma di partecipazione che fa sentire il soggetto parte di un gruppo che collabora per la realizzazione di un evento concreto; ad esempio le riprese di

32. Ad esempio, MySpace, Flickr, Messenger, YouTube e Twitter.
un filmato che hanno come oggetto una gita scolastica, un laboratorio teatrale, un momento ricreativo qualsiasi, anche esclusivamente didattico e formativo. Basti pensare a una conferenza immortalata per sempre da un indirizzo elettronico, rintracciabile attraverso una comoda ricerca in rete, o accessibile direttamente dal sito della scuola.

I giovani, come sostiene Morcellini34, hanno una natura “esplorativa”, infatti già da qualche anno, le indagini istat e censis35 disegnano il profilo di una generazione giovanile così intrecciata ai linguaggi della comunicazione da identificarla come networked generation. I mutamenti sociali e infrastrutturali che hanno coinvolto le giovani generazioni non possono non interessare anche la scuola. Le parole di Roberto Maragliano sintetizzano compiutamente questa realtà:

Una scuola refrattaria ai codici comunicativi musicali e visivi sarebbe una scuola estranea agli ambienti esperienziali dei suoi fruitori e non saprebbe rispondere a uno dei suoi compiti fondamentali, quello di addestrare alla valutazione critica dell’informazione che gli studenti ricevono all’interno della società in cui vivono36.

In questa prospettiva di aggiornamento e avanzamento tecnologico anche in materia di educazione scolastica, guadagna importanza il tema, già citato, della formazione dei docenti; una fase necessaria, considerata indispensabile nel processo distributivo di risorse tecnologiche nelle scuole, dalla quale non si può precludere proprio per consentire ai docenti di padroneggiare al meglio i codici comunicativi che caratterizzano i linguaggi multimediali.

Per tracciare un quadro esaustivo della distribuzione delle tecnologie e, in particolare, delle Lavagne interattive multimediali (LIM), ponendo attenzione alla relativa formazione degli insegnanti che sono chiamati a gestirle, passeremo in rassegna i contributi più significativi di ricercatori, insegnanti, esperti del settore, docenti universitari che, interrogandosi sulla questione, forniscono uno spaccato realistico di quanto sta accadendo in Italia. Riportiamo di seguito un estratto dell’articolo di Italo Tanoni, esperto del settore che ha rivestito in passato il ruolo di responsabile del progetto “Fortic” (programma di formazione tecnologica dell’INDIRE37 rivolto agli insegnanti) nelle Marche:

34 Morcellini, Cortoni, Provaci ancora, scuola, cit.
36 R. Maragliano, Nuovo manuale di didattica multimediale, Laterza, Roma-Bari 2008.
37 Dal Gennaio 2007, con l’entrata in vigore della Finanziaria, l’INDIRE è divenuto ANSAS. Il 1° settembre 2012, con la legge 15 luglio 2011, n. 111, pubblicata sulla Gazzetta Ufficiale n. 164 del 16 luglio 2011, art. 19 è stato ripristinato l’INDIRE.
Nel mese di settembre 2009 erano già state istallate nella secondaria di primo grado 7.697 LIM e sul loro utilizzo didattico verrà organizzata la formazione per 30.000 insegnanti sul modello blended e-learning\(^{38}\) ormai collaudato dall’ANSAS. Sempre su questo segmento scolastico verranno spalmate in seguito altre 10.000 lavagne multimediali e dal mese di novembre in poi partirà la stessa operazione per la scuola primaria e per la secondaria superiore. Entro giugno 2010 dovrebbero essere implementate con le LIM oltre 20.000 classi di vari ordini e gradi di realtà scolastica con circa centomila docenti in formazione. Se questi sono i grandi numeri dell’innovazione tecnologica della nostra scuola, si rimane interdetto leggendo i risultati di un’indagine condotta da Edu-Tech\(^{39}\) di Milano su un campione di circa mille insegnanti. Il 67% dei docenti utilizza il computer abitualmente, ma di questi solo il 24% conosce cosa sia una LIM: il 36% la confonde con un programma del Ministero. In definitiva, dopo oltre un decennio dall’introduzione delle TIC nella scuola pubblica, non si è notato l’auspicato cambiamento di mentalità determinato dall’utilizzo delle tecnologie nella didattica del quotidiano learning by doing\(^{41}\).

L’intervento di Tanoni esemplifica i punti nevralgici di una “questione scolastica italiana”, che viene perpetrata sin da troppo tempo, ribadendo come sia passato ben oltre un decennio dall’inserimento delle TIC nella scuola pubblica e dagli investimenti economici orientati verso questa direzione, senza che venisse innescato però il cambiamento di orizzonte culturale tanto atteso e sperato; senza una diffusione delle tecnologie per la didattica orientata al quotidiano learning by doing. La riflessione di Tanoni continua enfatizzando i concetti chiave di crisi e di rigetto che stanno alla base della questione del gap culturale tra scuola italiana e TIC:

Ci sono studiosi\(^{42}\), che esplicitamente evidenziano l’attuale “crisi scolastica di rigetto” nei confronti dell’attuale setting tecnologico. Tra questi ultimi Pier Cesare Rivoltella\(^{43}\), nell’analizzare il gap culturale tra scuola italiana e TIC, individua nella “fallacia tecnologica” il peccato originale di questo preoccupante distacco dall’innovazione. Si è pensato erroneamente che sarebbe stato sufficiente introdurre la tecnologia negli ambienti scolastici per cambiare il modello organizzativo e trasmissivo della didattica tradizionale. Tutto ciò non è avvenuto anche perché attraverso la formazione, non si sono modificati gli atteggiamenti dei docenti, i loro stili d’insegnamento, gli orizzonti culturali di un modello scolastico che ancora è vincolato dall’ipoteca della tradizione su cui si vuol riformare il sistema all’interno di una logica che fa intendere che si vuol cambiare tutto senza poi modificare nulla. Di fronte a questo

\(^{38}\) Per maggiori informazioni sulla terminologia cfr. il Glossario.
\(^{41}\) I. Tanoni, Editoriale. Le Lavagne multimediali interattive (LIM) e la scuola digitale, in “Form@re”, n. 64, 1° novembre 2009, in http://formare.erickson.it/wordpress/it/2009/editoriale-60.
\(^{42}\) M. Ranieri, Formazione e cyberspazio. Divari e opportunità nel mondo della rete, ETS, Pisa 2006; A. Calvani, Teorie dell’istruzione e carico cognitivo. Modelli per una scuola efficace, Erickson, Trento 2009.
\(^{43}\) P. C. Rivoltella, Screen generation, Vita e Pensiero, Milano 2006.
concreto rischio involutivo, il MIUR44 ha pensato bene di muoversi in due direzioni: quella dell’innovazione generale, assegnando almeno una lavagna interattiva a ogni scuola media e supportando l’attrezzatura tecnologica con un’attività formativa specifica rivolta al personale docente che utilizzerà la LIM, e quella della sperimentazione. Sul primo percorso basato sull’utilizzo massivo delle LIM, l’Agenzia Scuola (ex INDIRE), facendo leva sulle esperienze pregresse *blended e-learning* (ForTIC), nelle varie sedi regionali ha puntato sulle figure dei tutor che, suddivise in due macro aree disciplinari: matematico scientifico tecnologica e linguistico espressiva-storico geografica, cureranno nel territorio l’attività formativa nella media di primo grado. Sul piano metodologico-didattico l’obiettivo è quello di modificare gli aspetti strutturali del fare scuola con un cambiamento radicale sia dell’ambiente di apprendimento (tempi, spazi e organizzazione) sia delle modalità di rappresentazione della conoscenza, facendo leva sulle caratteristiche comunicative dei nuovi linguaggi45 (e-book, contenuti digitali *et al*.). Sul versante sperimentale il progetto Cl@ssi 2.0 che in tutta Italia coinvolge 156 prime medie, punta non sui numeri ma sulla qualità dell’esperienza che è stata attivata in collaborazione con 19 atenei universitari e l’Agenzia Scuola. Al progetto che nel 2009-2010 vedrà impegnate anche la primaria e la secondaria superiore, partecipano oltre 50 aziende leader nel settore dell’hardware e software mentre le due Fondazioni, Agnelli e S. Paolo, cureranno il monitoraggio dell’intera iniziativa che avrà respiro triennale. Nelle intenzioni dei promotori la sperimentazione dovrebbe servire come esempio di buone pratiche per tutte le attività afferenti al progetto Scuola digitale finalizzato al raggiungimento della *computer literacy* attraverso l’utilizzo degli strumenti comunicativi del web 2.0 (blog, wiki, Facebook, *instant messaging* ecc.) e della multimedialità. Tuttavia il vero banco di prova delle Cl@ssi 2.0 sarà quello della formazione del personale docente coinvolto nella sperimentazione. A differenza dell’operazione LIM che ha visto organizzare collateralemente un’attività *blended e-learning* per tutti i docenti della scuola media disponibili a operare con i linguaggi multimediali delle lavagne interattive, nessuna “istruzione per l’uso” di carattere formativo è stata data per le Cl@ssi 2.0. L’importo finanziario assegnato a ogni realtà è stato finalizzato esclusivamente all’acquisto di infrastrutture multimediali. L’affidamento della fase progettuale a vari atenei universitari non garantisce il buon esito sperimentale dell’importante iniziativa che ha bisogno di risorse da impegnare nel settore della formazione dei consigli di classe coinvolti. In caso contrario si rischia di vanificare attorno a questa esperienza, tutti i lodevoli sforzi che sono stati fatti per valorizzarla a livello nazionale e internazionale46.

Come emerge dall’editoriale di Tanoni, la formazione degli insegnanti riveste un’importanza fondamentale affinché la diffusione delle TIC non si risolva soltanto nella valorizzazione di un vuoto tecnico, e di quella che Rivoltella definisce appunto come «fallacia tecnologica»47. Come si evince dall’articolo, è chiaramente una scelta incauta non riservare alcun tipo di formazione agli insegnanti che saranno chiamati a gestire la sperimentazione Cl@ssi 2.0; la forma-

44 MIUR – Dipartimento per la programmazione e la gestione delle risorse umane, finanziarie e strumentali. Direzione generale per gli studi, la statistica e i sistemi informativi. Ufficio v – Innovazione tecnologica nella scuola: la Scuola digitale.

45 G. Biondi (a cura di), *LIM. A scuola con la lavagna interattiva multimediale*, Giunti, Firenze 2008.

46 *Ibid*., Tanoni, *Editoriale*, cit.

47 Rivoltella, *Screen generation*, cit.
zione è una pratica indispensabile per fornir loro quegli strumenti metodologici che consentiranno di gestire in modo vincente una tecnologia invasiva e funzionale quale è l’introduzione del pc in classe, per ogni scolaro. Inoltre, dotare una classe intera di personal computer consente di applicare metodologie didattiche di stampo collaborativo che coadiuvano la realizzazione di pratiche e orientamenti pedagogici, e mettono in risalto la centralità dell’alunno, a discapito di vecchie metodiche istruzionistiche tipiche degli anni Cinquanta e Sessanta. È quindi auspicabile supportare gli insegnanti con un’adeguata formazione anche progettuale, oltre che didattica, perché possano padroneggiare un canale comunicativo condiviso con le nuove generazioni. Ormai è opinione diffusa e accettata nell’ambito accademico la naturale predisposizione giovanile verso le più disparate tecnologie, veloci, interattive e multimediali.

Alla luce di queste osservazioni, prendiamo in considerazione il programma di azione relativo alla formazione dei docenti, nato in occasione del progetto AMELIS (Ambienti multimediali per l’educazione linguistica e interculturale nella scuola primaria), finanziato nell’ambito dell’iniziativa “Innovascuola primaria 2008-10”. Il progetto ha coinvolto dieci scuole tra Toscana e Umbria, ed è stato seguito da un team di ricercatori dell’Università di Firenze, costituito da Maria Ranieri e Giovanni Bonaiuti. Il lavoro si focalizza sulla formazione degli insegnanti per l’uso della LIM in classe e presenta un intervento per la progettazione e sperimentazione di risorse didattiche efficaci e adeguate evitando «perdite di tempo in estenuanti corsi di formazione o in frustranti improvvisazioni» e «improbabili adattamenti di modalità note, ma non necessariamente idonee», per usare le parole di Maria Ranieri e Giovanni Bonaiuti. Il metodo sostenuto dai ricercatori, invece, sarebbe basato sul modello del networked lesson study, una modalità di ricerca e produzione di contenuti didattici incentrato sul lavoro in piccoli gruppi e sull’impiego di tecniche di reciproca osservazione, su un «approccio finalizzato all’esplorazione di nuove modalità di insegnamento attraverso la sperimentazione sostenuta da un processo di riflessione congiunta e peer reviewing gestito da gruppi di insegnanti».

Le osservazioni proposte da Ranieri nell’ambito del progetto AMELIS presentano elementi comuni anche ad altre iniziative di questo genere, come ad esempio ArdesiaTech; un progetto sperimentale che ha coinvolto alcune classi di scuola primaria dell’istituto “Baccio da Montelupo”, dove sono state allestite diverse

49. Ibid.
50. Per una trattazione più diffusa dell’argomento cfr. M. Faggioli (a cura di), Fare didattica nella classe multimedialle, Giunti, Firenze 2013.
La formazione degli insegnanti è stata guidata da un coach che faceva parte del gruppo di ricercatori che ha lavorato al progetto. L’affiancamento di una figura esperta nell’ambito dell’inserimento delle tecnologie nella didattica ha guidato gli insegnanti nell’acquisire nuove competenze in gruppo. La riflessione e la rielaborazione personale sollecitata dal coach riguardo alle nuove pratiche metodologiche hanno permesso che le competenze acquisite con il passare del tempo e la frequenza dell’uso quotidiano divenissero persistenti, diventando patrimonio della professionalità del singolo docente. Come evidenziano i maggiori ricercatori in ambito tecnologico e didattico il rischio di un’errata collocazione del mezzo negli spazi scolastici, di mancanza di assistenza tecnica e formazione adeguata minano l’impatto ecologico del sistema – che può definirsi tale se è funzionale al conseguimento degli obiettivi prefissati.

Le riflessioni della studiosa, inoltre, enfatizzano come una buona pratica d’uso debba fondare i suoi presupposti su un’adeguata assistenza tecnica e sull’applicazione di un modello che deve corrispondere allo sviluppo di nuove competenze. Riportiamo di seguito un estratto dell’articolo che offre la possibilità di osservare più nel dettaglio come gestire l’attività di formazione dei docenti, tenendo conto delle variabili sopra indicate:

Le competenze da sviluppare sono infatti molteplici e non possono essere ricondotte al solo addestramento tecnologico. Il risultato finale atteso è, infatti, la capacità di integrare in maniera articolata le conoscenze disciplinari con quelle tecnologiche e didattiche. È cioè necessario arrivare a maturare una nuova consapevolezza del rapporto insegnante-allievo in un setting operativo nuovo dove, grazie alla lavagna interattiva, alcune cose si possono fare in maniera diversa da come si facevano prima. Ma quali cose fare alla lavagna e come? E quali invece continuare a farle in maniera tradizionale? Come fare a valutare se il risultato conseguito è migliore rispetto a quello che si sarebbe potuto conseguire operando in altro modo? L’esperienza internazionale ci dice che non è semplice giungere in tempi rapidi a sviluppare competenze adeguate. La strada migliore, comunque, sembra essere quella di affiancare agli insegnanti in formazione colleghi più esperti in veste di tutor. Il Messico, ad esempio, ha scelto di supportare gli oltre 180.000 insegnanti coinvolti nel progetto Encicolmedia, con un’attività di formazione condotta da un’équipe di esperti di didattica disciplinare, reclutati in trentadue università. Scelta analoga è stata svolta dalla Francia. Il Regno Unito si è avvalso di tutor organizzati in un team centrale presso la rete nazionale National Whiteboard Network. La stessa Agenzia nazionale per lo sviluppo dell’autonomia scolastica, quando agli inizi del 2009 si è trovata a dover provvedere alla formazione a tappeto dei docenti delle scuole candidate a ricevere le dotazioni previste dal Ministero, ha pensato bene di reclutare dei tutor a cui affidare attività di formazione in presenza e on-line.

L’intervento della ricercatrice consente di effettuare una ricognizione sul tema con lo sguardo rivolto anche a un ambito più ampio, di respiro internazionale. L’esperienza registrata in altre nazioni mira a diffondere il nuovo setting operativo in contesti didattici, sviluppando competenze adeguate e affiancando agli insegnanti in formazione colleghi esperti in veste di tutor, reclutati nel mondo accademico. Le riflessioni sulla questione proseguono, poi, offrendo una visione sistematica, ma al contempo anche critica del fenomeno:

Questo tipo di interventi, pur necessari, presentano però il limite di non riuscire sempre ad andare oltre il “che cosa” si può fare con la LIM per affrontare il problema di “come” farlo nel modo migliore […]. Quando l’insegnante si trova da solo, in classe, con il nuovo strumento è infatti forte la tentazione di adattare al nuovo mezzo modalità di lavoro a cui si è abituati o,banalmente, a riprodurre quanto visto fare. È cioè molto difficile – e non potrebbe essere diversamente – che si sviluppi intuizioni creative capaci di portare a far emergere contributi personali allo sviluppo di didattiche innovative. Al tempo stesso, non si possono trasciare le note problematiche che incidono sulla diffusa resistenza degli insegnanti e della scuola, più in generale, verso l’adozione di strumentazioni tecnologiche innovative. Come ha mirabilmente illustrato [Larry] Cuban, in un suo lavoro del 1986, la vita professionale di un insegnante si basa su un insieme consolidato di pratiche e routine funzionali al conseguimento di determinati obiettivi, dettati tipicamente da un programma, all’interno di un contesto che presenta specifici vincoli e limitazioni. In questa situazione, l’insegnante adotta un nuovo strumento, modificando una pratica se, per così dire, ne vale la pena, ossia se questa innovazione è funzionale al superamento di una realtà che egli vive come problematica. In caso contrario, quale motivo avrebbe l’insegnante per modificare la propria pratica? Se funziona, non c’è motivo di innovarla. Se non funziona, si è disposti a cambiare a patto però che il cambiamento sia funzionale alla soluzione di ciò che si vive come problematico (si veda anche Ranieri).

Modificare una prassi consolidata dall’abitudine e dall’iterazione di comportamenti ormai acquisiti nel tempo è per il docente uno sforzo cognitivo dalla portata non indifferentie. L’obiettivo di migliorare risultati o risolvere situazioni avvertite come critiche o problematiche può essere la spinta propulsiva che rende possibile una tensione al cambiamento. Adattare ai nuovi devices tecnologici modalità di lavoro praticate da tempo è una tentazione molto forte soprattutto perché è rassicurante; la disponibilità, invece, a sovvertire questo sistema acquisita un senso se innovare una pratica significa ricevere un ritorno funzionale al conseguimento di obiettivi ormai non più raggiungibili con metodi, seppur consueti, superati. Si è disposti a mettersi in discussione solo se

l’impiego di energie emotive e cognitive saranno destinate al conseguimento di obiettivi precisi, come, ad esempio, tempi e modalità di lavoro più agevoli che influiscano positivamente sui risultati della propria professionalità e soprattutto se l’investimento di tali energie sarà destinato all’innalzamento di un prestigio sociale che ormai la professione docente sta perdendo sempre di più, nel corso del tempo. Proponiamo di seguito la parte dell’articolo di Ranieri dedicata alla descrizione del modello creato per la formazione dei docenti in relazione al progetto AMELIS:

Il modello che abbiamo messo a punto nell’ambito del progetto AMELIS si ispira a quello del Networked Lesson Study (NLS), sviluppato in Inghilterra nell’ambito del programma Networked Learning Communities 2002-2006. L’espressione networked lesson study, che alla lettera potremmo tradurre con “studio della lezione in rete”, designa un processo basato sul lavoro in gruppi di insegnanti, appartenenti a diverse scuole che hanno costituito una rete, e orientato alla progettazione e implementazione di lezioni e pratiche innovative per risolvere i problemi della classe e migliorare gli standard di insegnamento e apprendimento [...]. Le origini del NLS vanno ricercate in una forma di ricerca didattica collaborativa attuata dagli insegnanti giapponesi: si tratta della lesson study o lesson research (dal giapponese jugyou kenkyuu, ossia di “lezioni sperimentali” che in modo collaborativo gli insegnanti pianificano e sperimentano in classe con gli studenti attraverso l’osservazione reciproca e la discussione. In Giappone, tradizionalmente, gli insegnanti si organizzano in gruppi di lavoro, individuano un aspetto della loro attività didattica che con molta probabilità avrà un impatto su specifiche aree d’apprendimento degli allievi e dedicano due o tre anni al lavoro di gruppo pianificando interventi che potrebbero funzionare, osservando da vicino queste “lezioni di ricerca”, decostruendo e commentando ciò che apprendono – dagli errori ai successi. Alla fine di un ciclo di studi, tengono pubblicamente una “lezione di ricerca” davanti ai colleghi della propria scuola o di scuole locali per condividere le proprie pratiche e le criticità emerse55. Questo approccio, molto popolare in Giappone, ha conosciuto una certa fortuna anche nei paesi occidentali [...]56. Il lesson study è, cioè, più attento all’aspetto progettuale e ideativo (ad es. attraverso momenti di peer-insight) [...]. Il progetto AMELIS si proponeva di affrontare la tematica di migliorare l’insegnamento e l’apprendimento di una seconda lingua (l’italiano per i bambini stranieri o l’inglese per quelli italiani) attraverso la produzione e sperimentazione di un numero consistente di risorse didattiche da utilizzarsi in classe con la LIM. Per raggiungere questo obiettivo si è ritenuto opportuno intervenire sulla formazione degli insegnanti al fine di sviluppare non solo le loro competenze tecniche (produzione di materiali multimediali e uso della LIM), ma anche e soprattutto la loro consapevolezza metodologico-didattica. L’obiettivo principale, per gli insegnanti, è infatti non solo quello di creare materiali multimediali adeguati, ma anche quello di dare successivamente vita a situazioni didattiche capaci di coinvolgere l’intera classe57.

57. Bonaiuti, Ranieri, La lim in classe, cit.
1.9. LIM, la tecnologia più diffusa nelle classi

Come sostiene Giovanni Biondi, attuale presidente del consiglio di amministrazione dell’INDIRE di Firenze, la LIM è una tecnologia che non sembra rivoluzionare, ma semplicemente innovare uno strumento usato quotidianamente dall’insegnante. Non genera azioni di rigetto, si integra nella classe e non richiede “patenti”\(^{58}\).

L’azione di diffusione delle LIM nelle scuole italiane si avvale di un piano\(^{59}\) di distribuzione ben strutturato con lo scopo di dotare numerosi istituti scolastici su scala nazionale della lavagna interattiva multimediale, una tecnologia la cui prima apparizione in ambito aziendale risale agli anni Ottanta. Il bando è visibile in modalità online insieme ai documenti di gara relativi l’acquisto di una fornitura per gli istituti comprensivi e le scuole secondarie di primo grado in territorio nazionale, di 8.000 “dotazioni tecnologiche” (LIM), nonché del “supporto alla didattica” e dei “servizi” a esse relativi\(^{60}\).

Per definire la lavagna interattiva multimediale scegliamo intenzionalmente di proporre come fonte di riferimento la definizione data da Wikipedia\(^{61}\). Si tratta di una scelta ponderata legata alle caratteristiche strutturali di Wikipedia, l’enciclopedia libera per antonomasia, cui tutti possono collaborare volontariamente: Wikipedia è un ambiente multimediale e multilingue, e la sua componente veramente nuova e innovativa è la possibilità di trarre sostentamento da un meccanismo autopoietico\(^{62}\), cioè di autopreservazione e autosostentamento. È come un organismo vivente che, autoregolamentandosi, genera da sé la sua linfa vitale, traendo sostentamento attraverso questo meccanismo. Il termine “autopoiesi” è stato coniato nel 1972 dal filosofo Humberto Maturana, a partire dalla parola greca autòs, ovvero se stesso, e pòiesis, cioè creazione, in pratica significa che un sistema ridefinisce continuamente se stesso, e si sostiene e si riproduce al proprio interno. Un sistema autopoietico si può definire come una rete di processi di creazione, trasformazione e distruzione di componenti che interagendo fra di loro sostengono e rigenerano in continuazione il sistema. Di fatto esso si autodefinisce, in altre parole il dominio di esistenza di un sistema autopoietico coincide con il dominio topologico delle sue componenti, per questa ragione fisiologica un meccanismo autopoietico si autoalimenta.

\(^{58}\) Biondi (a cura di), *LIM. A scuola con la lavagna interattiva multimediale*, cit.

\(^{60}\) Il supporto alla didattica e di servizi ad esse relativi sono forniti dall’Agenzia nazionale per lo sviluppo dell’autonomia scolastica (ANSAS), ora INDIRE (cfr. http://www.indire.it).

Condizioni necessarie affinché ogni libero cittadino possa contribuire ad alimentare il sistema, ovvero in questo caso particolare a far accrescere il patrimonio di conoscenze collettivo, sono un pc, una connessione a Internet e la voglia di sapere, condividere e preservare un patrimonio che può essere democraticamente di tutti. Un serbatoio di risorse informative sempre modificato e aggiornato, valutato da una comunità, e in fine “democraticamente” corretto. Un’azione che può compiersi potenzialmente all’infinito. Di seguito riportiamo una versione arricchita e integrata della descrizione della LIM proposta da Wikipedia\(^{63}\):

La lavagna interattiva multimediale, detta anche LIM è un dispositivo elettronico avente le dimensioni di una tradizionale lavagna didattica, sul quale è possibile disegnare usando dei pennarelli virtuali. Tipicamente è collegata a un personal computer, del quale riproduce lo schermo. Permette quindi di mantenere il classico paradigma didattico centrato sulla lavagna, estendendolo con l’integrazione di multimedia, l’accesso a Internet e la possibilità di usare software didattico in modo condiviso. Sulla base della tecnologia usata per interagire con il computer si possono attualmente classificare sei tipi di lavagne interattive multimediali: elettromagnetiche, analogico-resistive, ottiche basate sull’infrarosso, laser, ultrasoniche e basate su tecniche di riconoscimento delle immagini. A seconda della tecnologia usata, può essere necessario usare degli appositi pseudo-pennarelli, oppure può essere possibile interagire con il computer toccando la lavagna stessa con un qualunque oggetto, o semplicemente con le dita. Le lavagne interattive multimediali si dividono inoltre in due categorie per quanto concerne la tecnica di visualizzazione: possono essere retroproiettate o a proiezione frontale. La prima lavagna interattiva multimediale risale al 1991. Nel 2006 il ministro della pubblica istruzione\(^{64}\) Giuseppe Fioroni annuncia l’introduzione nelle scuole italiane di 10.000 lavagne multimediali. Poi ripresa nell’ottobre 2008 dal ministro Maria Stella Gelmini che ha rilanciato il piano già avviato dal precedente governo per dotare le scuole italiane di 10.000 lavagne multimediali.

Per avere una visione più esaustiva del fenomeno di diffusione delle lavagne interattive multimediali facciamo riferimento a un articolo apparso on-line sulla rivista “Form@re”, a firma di Bonaiuti ricercatore dell’Università di Firenze. L’intervento dello studioso enfatizza come la distribuzione della LIM nelle scuole, pur essendo una pratica didattica e tecnologica innovativa, non è immune dai rischi di un suo cattivo impiego. La paura di un uso convenzionale legato a metodiche tradizionali, lontane dall’innovazione e da una didattica ripensata per l’utilizzo del mezzo proposto, fa convergere l’ipotesi del ricercatore con quelle sostenute da altri esperti, che citeremo in rassegna per offrire un quadro chiaro ed esaustivo del fenomeno, i quali temono che tutto si riduca a un uso parziale e modesto.

La lavagna interattiva multimediale (LIM) è ormai entrata anche nelle scuole italiane. Nel corso degli ultimi anni, iniziative ministeriali, regionali e provinciali hanno dotato o stanno dotando numerose scuole, dal Nord al Sud Italia, di questo dispositivo. La sua diffusione è accompagnata da discorsi appassionati che puntano l’accento sulle possibilità di un radicale cambiamento della didattica e, conseguentemente, sul miglioramento dell’offerta formativa che a questo si associa. Nonostante la LIM si limiti a integrare funzionalità del tutto preesistenti (il computer, il videoproiettore, i sistemi touch screen…), il suo arrivo nelle classi è in grado di trasformare in maniera profonda e significativa le pratiche didattiche quotidiane consentendo il ripensamento delle tradizionali modalità di insegnamento. La LIM viene generalmente vista come un mezzo per promuovere il coinvolgimento degli alunni attraverso una didattica multimediale ricca e articolata, capace quindi di comunicare in maniera visiva concetti spesso percepiti come astratti e lontani dalle modalità espressive delle giovani generazioni. Ogni “nuovo” dispositivo impone, però di fare i conti non solo con le potenzialità assunte in astratto, ma anche con tutta una serie di criticità che nella pratica accompagnano ogni processo di innovazione. La storia delle tecnologie didattiche insegna che le cose non sono sempre andate come le concettualizzazioni teoriche facevano immaginare, tanto che molti oggetti rivoluzionari continuano a stazionare nei magazzini e nei sottoscala di tante scuole. In alcuni casi si è trattato di strumenti inutili, in altri casi di strumenti complicati o troppo audaci per i tempi, in altri ancora di dispositivi la cui accoglienza da parte degli insegnanti è stata del tutto modesta. La LIM rientra, molto probabilmente, nella categoria degli “strumenti giusti al momento giusto”, ma non per questo è immune dai rischi di un suo cattivo impiego. È uno strumento giusto perché è relativamente facile da utilizzare, perché porta finalmente il computer in classe (invece di obbligare le classi a spostarsi nei laboratori) e, infine, perché si diffonde in un momento storico in cui grazie a Internet le risorse didattiche disponibili sono davvero tante.

Per consentire una visione pluridimensionale del fenomeno si espongono le posizioni critiche assunte dai ricercatori più esperti delle principali università italiane e internazionali, che si sono interrogati sulla criticità della questione, e stanno continuando a farlo svolgendo attività di ricerca sul campo. Iniziamo analizzando il contributo fornito dalle considerazioni di Margaret Allen, responsabile dell’European Education Strategy di Promethean, uno dei principali fornitori di tecnologie interattive per l’apprendimento, nonché produttore di diversi modelli di LIM. Allen, grazie alla sua lunga esperienza di insegnante elementare in Gran Bretagna, riesce a sintetizzare nel suo intervento come gestire in modo funzionale alla professione docente la presenza della LIM in classe. Secondo la studiosa, la strategia vincente per trarre i maggiori benefici dall’inserimento di questo strumento è enfatizzare l’attenzione sugli obiettivi didattici piuttosto che concentrarsi sull’impiego di funzioni esuberanti:

Viene proposto un esempio pratico, dall’ambito della scuola primaria, per illustrare come il software interattivo può essere utilizzato per sostenere il perseguimento degli obiettivi di-

dattici. Verranno identificati alcuni vantaggi tra cui l’impatto sulla presentazione, sulla pratica didattica, sull’ambiente di apprendimento e sull’apprendimento stesso. È in quest’ultimo ambito che il vero potenziale delle lavagne interattive per trasformare l’istruzione solleva, in ultima analisi, dubbi. Nonostante questo, ci sono chiaramente una serie di fattori che influenzano il grado in cui i vantaggi si concretizzano. Questi includono aspetti pratici, come la frequenza di utilizzo e di accesso, l’atteggiamento del docente, le sue competenze e il processo di gestione del cambiamento a partire da quando la tecnologia viene introdotta. Per garantire il massimo beneficio, l’attuazione deve quindi essere ben ponderata e accompagnata da discussioni pedagogiche per garantire che la tecnologia venga effettivamente integrata nell’ambiente scolastico.

Come evidenzia Allen, l’introduzione di una tecnologia in classe non può generare un uso vantaggiose in termini didattici se non è accompagnata da un’adeguata formazione antecedente, insieme alla promozione di approcci pedagogici efficaci progettati in relazione alle specifiche logistiche dell’oggetto in questione. Inoltre, l’accesso regolare alla LIM è essenziale in quanto consente agli insegnanti di mettere in pratica ciò che hanno appreso con momenti predisposti per lo scambio e l’attivazione di discussioni pedagogiche, per aumentare la padronanza della tecnologia e consolidare quanto già imparato; perché la presenza in quanto tale della LIM in classe non determina l’efficacia dell’insegnamento se non si manifestano sinergicamente la frequenza assidua dell’uso della tecnologia con il supporto di tutti gli elementi descritti.

Come sostiene ancora Allen, la presenza di un device tecnologico consente di creare un ambiente potenziato da stimoli diversi, in grado di sollecitare la partecipazione e l’interesse alla scoperta di un mondo coinvolgente che irrompe all’interno delle mura scolastiche.

Le LIM e la tecnologia non garantiscono l’insegnamento efficace, ma hanno il potenziale per creare un ambiente ricco e stimolante in grado di soddisfare una vasta gamma di stili di apprendimento, sia per l’insegnante che per i bambini. Lo sviluppo di un ambiente coinvolgente e stimolante è fondamentale in ogni aula: consente ai bambini di acquisire confidenza e motivazione alla scoperta del proprio mondo. Offrire una gamma di attività che promuovono l’indipendenza, oltre a permettere l’intervento degli adulti, significa poter soddisfare i bisogni di ogni bambino.

Allen mette in risalto quanto sia indispensabile promuovere l’indipendenza del bambino per favorire l’apprendimento; insiste sul fatto che una tecnologia

orientata verso la centralità di ogni singolo studente possa essere di fondamentale importanza per contribuire alla formazione dell’identità personale e intellettiva di ogni singolo alunno, un modo per ottenere questo risultato potrebbe essere di corredare ogni banco di scuola con una tecnologia ad alto contenuto simbolico. I bambini padroneggiano i codici tipici della multimedialità: è per questa ragione che gli insegnanti hanno bisogno di conoscere come utilizzare le tecnologie, per coinvolgere gli alunni e sviluppare pienamente le loro potenzialità.

Nel materiale di studio elaborato per la formazione dei docenti all’interno di PuntoEdu, la piattaforma realizzata da INDIRE, Morena Terraschi, figura esperta del settore, argomenta così:

Le LIM vengono usate per obbiettivi molteplici: per stimolare l’attenzione e la motivazione, per supplire alle difficoltà di apprendimento, per combattere la dispersione scolastica, per promuovere l’alfabetizzazione informatica e per sviluppare esperienze specifiche nella didattica delle discipline. Il rischio certo è quello di farne la nuova soluzione miracolosa per i problemi della scuola, ma le esperienze positive ci sono ed è giusto tenerne conto e prendere spunto, senza dimenticare che non può esistere una esperienza felice di uso didattico della lavagna interattiva multimediale senza una solida metodologia didattica e senza un approccio costruttivista all’uso delle TIC nella scuola [...] Il vantaggio più evidente è che permette di realizzare una classica lezione frontale abbinando all’esposizione orale le potenzialità che vengono dal multimediale. Il docente può quindi supportare la propria lezione con delle slide e integrarla, qualora sia necessario, con la visione di software didattici e di siti specifici68.

La semplicità d’uso della LIM consente all’insegnante di non avvertire la presenza della lavagna interattiva multimediale in classe come estranea alla pratica didattica consolidata negli anni, ma anzi, come strumento facilmente integrabile con essa. Questa tecnologia multimediale, che necessita del supporto di un computer e di un video proiettore per poter avviare il suo corretto funzionamento, dispone di un software particolare che ripropone il meccanismo d’uso simile al programma PowerPoint. In molte università italiane si registrano esempi frequenti di lezione frontale supportata dalla proiezione di slide raccolte in una presentazione di tipo PowerPoint. Come sostiene Teresa Magnaterra, ricercatrice presso l’Università di Macerata:

I docenti sembrano prospettare con la LIM prevalentemente strategie di tipo trasmissivo/recettivo o direttivo/sequenziale e, più raramente, una scoperta guidata o esplorativa/collaborativa; questa scelta attuale dipende da due fattori: il primo è senz’altro costituito dal

La lavagna è usata in prevalenza dall’insegnante per spiegare gli argomenti della lezione frontale e gli alunni sono fruitori di una lezione più ricca perché costruita su una varietà di tipologie di rappresentazione (testi, immagini, video, suoni, simulazioni, ambienti digitali). Essi, inoltre, interagiscono con lo strumento e offrono in tal modo al docente la possibilità di verificare gli effetti della spiegazione stessa. Quindi la lezione frontale si avvale del device tecnologico e si completa grazie all’intervento attivo e propositivo degli alunni stimolati dal confronto con questo strumento ausiliario.

La lim è gestita da uno o più alunni in maniera cooperativa o collaborativa per la presentazione alla classe o la visualizzazione di un lavoro realizzato in modo autonomo o collettivo. I ragazzi preparano a casa una presentazione e la espongono alla classe grazie all’ausilio delle slide. Proviamo a scomporre nel dettaglio il compito che l’alunno è chiamato a fare a casa, da solo o con un gruppo estrapolato dalla classe. Per realizzare la presentazione a casa gli alunni dovranno disporre di un computer, preparare delle slide e corredarle con applicazioni multimediali; salvare il materiale tramite un supporto USB per portarlo a scuola. Prima della presentazione all’insegnante e al resto della classe, per proiettare il compito svolto a casa, bisognerà trasmettere il materiale al pc della scuola, che è connesso alla lavagna tramite il videoproiettore. Quindi la lavagna è gestita da uno o più alunni ai fini della presentazione in classe. Il lavoro svolto dagli studenti attraverso la lavagna si esaurisce nel compimento di azioni statiche e manuali. Il singolo alunno accanto alla lavagna espone solo la parte finale di un lavoro che, senza tutte le fasi pregresse ovvero i momenti di scambio interattivi e collaborativi, di problem solving e condivisione sociale fattiva per il conseguimento di un obiettivo comune, sarebbe poco significativo, nonostante la presenza della lim durante la presentazione finale esplicativa. La figura 1 illustra le potenzialità strumentali della lim.

Purtroppo alcune condizioni sfavorevoli attuali, come le aule composte da un numero elevato di studenti, rischiano di penalizzare gli studenti che, per mancanza di tempo durante le ore curricolari, non riescono a “testare” personalmente il dispositivo elettronico. La condizione più favorevole sarebbe quella in cui ogni

classse fosse attrezzata con portatili in modo da rendere fruibile il lavoro già in formato digitale, prima e durante l’illustrazione dell’argomento attraverso la lavagna. Gli alunni potrebbero interagire con l’insegnante e la classe senza dover andare alla lavagna, ovvero potendo usufruire, ad esempio, di netbook per mostrare, in tempo reale, sul display della lavagna, gli esiti del lavoro che stanno preparando. In assenza di questi, l’insegnante si troverebbe a dover dirimere dei turni di gestione della lavagna per non creare confusione e farvi accedere tutti.

Le attività didattiche realizzate con la LIM possono essere potenziate anche con l’uso di Internet, attivando strategie di collaborazione cooperative tra gli alunni e l’insegnante e tra gli alunni stessi. La rete può essere usata principalmente per due attività: come repository (deposito) di materiali ai quali fare riferimento in caso di necessità, in tempo reale, in classe e con gli alunni stessi; come luogo metaforico nel quale rendere visibili gli artefatti prodotti attraverso il lavoro di classe o individuale. Quando viene utilizzata come repository non sempre si ha a disposizione l’indirizzo Internet della risorsa che si sta cercando, ragion per cui è indispensabile effettuare delle ricerche strategiche, trascrivendo le stringhe create ad hoc sul form del motore di ricerca. Potrebbe essere interessante effettuare questa operazione di ricerca con la classe e scoprire insieme ai ragazzi le infinite risorse reperibili in rete.

Altre attività da predisporre con la classe consistono, per produrre altri esempi, nel controllare e selezionare, in tempo reale, diversi dizionari digitalizzati, per fare un confronto incrociato delle definizioni di uno stesso lemma; nell’ambientare in rete un’azione didattica creativa, interattiva e partecipativa,
come nel caso della creazione di un forum tematico riguardante confronti tra autori per tassonomie di riferimento strutturate dal docente, avendo introdotto prima, durante la lezione, il concetto di tassonomia. L’attività del forum potrebbe essere organizzata anche attraverso la sollecitazione di parole chiave che organizzano i contenuti disciplinari, ad esempio la parola “esilio” potrebbe essere il pretesto narrativo per creare un forum di letteratura che abbia come contenuto riferimenti testuali e risorse multimediali di autori accomunati da questo tema esistenziale. La rete offre di certo degli spunti di riflessione e di sviluppo di pratiche didattiche che consentono una grande autonomia al singolo insegnante. Si possono avviare lavori di ricerca interdisciplinare e scandire le varie fasi attraverso un blog, inteso nel significato letterale ovvero un “diario di bordo” dove annotare scrupolosamente tutti i risvolti delle scoperte ed evoluzioni della classe. Si tratta di un lavoro gestito dall’insegnante, che si occupa di creare i topic adatti al raggiungimento dell’obiettivo didattico, e che si articola nella gestione puntuale degli aggiornamenti del blog che può essere affidata a un gruppo di alunni.

La possibilità di avere un ambiente digitale nel quale confrontarsi dà spazio a percorsi interdisciplinari nei quali produrre contenuti che arricchiscono quelli presentati sui libri di testo; ciò consente anche di trovare punti di connessione tra le diverse materie e dare spazio all’espressione della personalità individuale. Le opportunità sono tante, la lezione diventa più stimolante per gli allievi e il docente si misura con la sua creatività. L’utilizzo di software didattici arricchisce il kit strumentale a disposizione del docente che può rappresentare i fenomeni spiegati attraverso tabelle, grafici, testi collettivi, mappe concettuali e sitografie, ma anche proporre dei webquest o webtour, usare blog, wiki, forum ecc. da visionare insieme alla classe usufruendo dello schermo condiviso della lavagna interattiva multimediale.

Un aspetto che ci sembra importante sottolineare, anche rispetto al legame che può avere con l’uso della LIM a scuola, è che Internet non è solo un luogo in cui cercare e trovare documenti di tutti i tipi, ma è anche un luogo e uno strumento in cui e con cui condividere delle conoscenze. È innanzitutto un deposito di risorse (in particolare testuali), praticamente infinito, in cui si condivide e si diffonde conoscenza; ma è anche un luogo in cui e attraverso cui comunicare (sia in maniera sincrona che asincrona), se non persino costruire direttamente conoscenza.

Dopo aver proposto in rassegna le attività elencate, amplificate dalle potenzialità multimediali della lavagna interattiva, riportiamo a conclusione della nostra panoramica le considerazioni di Magnaterra per sintetizzare più punti di vista, ma anche per rilevare criticità riguardo al tema della LIM:

La presentazione attraverso la lavagna interattiva di materiali è gradita agli studenti, li coinvolge, ma si esaurisce in un tempo breve non commisurabile al tempo della preparazione,

quasi lo vanificasse e lo rendesse ingiustificato. La riflessione e la documentazione del lavoro sviluppato in classe è stata, poi, spesso vissuta come richiesta da assolvere; non si è sentita insomma l’esigenza di narrare, di ricostruire per condividere, per comprendere, per rilanciare l’attività stessa. Il file multimediale ottenuto è stato concepito non più come la minuta che serve a costruire un materiale provvisorio da mantenere intatto e da annotare per evidenziare procedure e processi emersi, ma piuttosto il foglio da mettere in bella copia e da consegnare, quasi fosse un compito. Puntano insomma più sul prodotto, che vogliono gradire graficamente, piuttosto che sul processo che si è sviluppato in classe70.

L’esito, il prodotto finito che viene fruito attraverso il piano di lavoro condiviso della lavagna digitale è certamente la parte più evidente, ma non dobbiamo dimenticare che rappresenta soltanto una fase limitata dell’intero processo; non possiamo quindi credere metonimicamente che questa singola parte possa rappresentare il tutto. È un sistema complesso che prende le distanze da una visione semplistica e modesta basata sulla fruizione di unità didattiche preconfezionate e riusabili: facciamo riferimento a un processo didattico \textit{in fieri}, nel quale sia possibile ridefinire i termini della “sceneggiatura” che il docente imbastisce e modifica in corso d’opera, di cui l’esibizione finale attraverso lo schermo della \texttt{LIN} è un piccolo tassello di mosaico che si compone di parti assai più preziose e interessanti.

La differenza tra un sistema che si avvale di unità didattiche preconfezionate e riusabili e un altro che ridefinisce i suoi termini \textit{in fieri}, costruendo una sceneggiatura modificabile in corso d’opera e amplificata dalle potenzialità del digitale e dalle numerose attività che, grazie a esso, si possono realizzare (come ad es. quelle citate sopra) è evidente. Le ragioni fondamentali di questa diversità sono da ricercare nelle tematiche di interesse di una classe che non possono essere equivalenti alle tematiche di interesse di un’altra. Le dinamiche potenziali che si esplicitano in un determinato processo educativo, in un contesto definito e caratterizzato da variabili precise non sono ripetibili, meccanicamente \textit{in toto}, in un altro intervento didattico.

Tali dinamiche potenziali sono di vitale importanza affinché il processo educativo possa generare apprendimento concreto, realizzato solo e soltanto in quel determinato contesto, ragion per cui non saranno più replicabili. La natura intrinseca multiprospettica del digitale e dei setting tecnologici – a disposizione di classi multimediali – rappresenta un valore aggiunto che arricchisce la professione docente perché amplia il campo di azione nel quale essa si trova a operare. Nonostante l’entusiasmo che spesso anima giovani insegnanti pronti a mettere in discussione il proprio ruolo a vantaggio di un maggiore prestigio sociale e di un incremento delle competenze personali, il timore che tutto si riduca – pur-

70 Magnaterra, \textit{La \texttt{LIN} in classe}, cit.
troppo – nella stabilizzazione di pratiche note piuttosto che nell’evoluzione di orientamenti innovativi (ampiamente argomentati) è molto diffuso.

Affidiamo la conclusione del capitolo a un’altra arguta riflessione di Magnaterra, che porta alla luce in modo critico la paura, diffusa tra gli insegnanti più illuminati, che questa nuova tecnologia possa solo stabilizzare pratiche già consolidate nella scuola.

Nell’esperienza degli insegnanti si intravede quindi un rischio concreto, che tutto il percorso di formazione intorno alla LIm si esaurisca nella conquista del gesto. Imparare a usarla per essere al passo con i tempi, perché cattura i ragazzi, perché rende la lezione più accattivante, addirittura più divertente, perché rende gli alunni più partecipi e attenti. Ma i docenti stessi si chiedono: se e quando diventerà “normale”, che cosa succedera? Quando gli alunni si abitueranno che cosa rimarrà della motivazione che si riscontra oggi? Daniel Pennac ha tratteggiato, in modo letterario, con efficacia che l’obiettivo della lettura a scuola non può esaurirsi nella conquista del gesto; non basta imparare a leggere e si sappia leggere. Leggere è un atto. È intenzionale, consapevole, è un “atto di creazione permanente”71. Il lungo e anche faticoso processo di decodifica della tecnologia del libro deve essere accompagnato dalla ricerca della “storia” che c’è dentro, in maniera che si riesca ad attraversarla per sapere come va a finire o a cercare la struttura con cui è stata costruita. Anche per la LIm possiamo prefigurare un futuro di questo genere; occorre allora muoversi in modo che il gesto si tramuti in atto, che lo stupore iniziale che si concentra sul funzionamento, sulla varietà e la molteplicità degli effetti e delle soluzioni da adottare diventi una ricerca di senso da conquistare, per capire che cosa si può costruire con la lavagna interattiva e come questo che cosa si struttura e si reifica. Ora l’attenzione e la concentrazione si focalizzano non tanto sulla possibilità di avere un oggetto che raccoglie materiali ed esperienze in modo da renderli disponibili continuamente per la discussione, per la riflessione, per l’analisi di come sono cambiate le cose e di come possono essere riviste e ricostruite. Ora l’obiettivo sembra esclusivamente quello di possedere e padroneggiare uno strumento che sembra ancora estraneo, ma che promette grandi cambiamenti72.

72. Magnaterra, La lim in classe, cit.
2. Buone pratiche a confronto

Le idee delle persone prendono forma e si trasformano quando trovano espressione attraverso differenti media, quando sono inserite in particolari contesti e quando si sviluppano al di fuori della mente individuale.

S. Papert

2.1. Premessa

Il tema principale di questo capitolo è la descrizione di buone pratiche d’uso didattico, testimonianze di casi di studio che esemplificano un esito positivo dell’inserimento delle TIC in classe. Presenteremo in rassegna le esperienze educative che riteniamo più importanti perché caratterizzate da un forte impatto ecologico, in grado di orientare in modo positivo l’introduzione dei media digitali in classe. In particolare, descriveremo la sperimentazione “MARINANDO: scuola a distanza” e “Un computer per ogni studente”, entrambi plausibili esempi di best practices, perché nel loro ambito l’educazione ai media assume il compito di ricontestualizzare i significati dell’educazione, sulla base di nuove prospettive di identificazione dei linguaggi comunicativi e formativi.

Si parlerà diffusamente di pratiche innovative e sperimentali, caratterizzate dall’inserimento di un netbook nell’attività didattica di tutti i giorni, in classe e a casa. Descriveremo nuovi contesti scolastici contraddistinti dall’utilizzo di una tecnologia progettata per essere a “misura di bambino”. Osserveremo da vicino la sperimentazione all’avanguardia che ha consentito a una classe quinta di scuola primaria del 1° Circolo di Rivoli e a due classi, una di prima e una di quinta elementare, del 1° Circolo di Novi Ligure di poter usufruire di un piccolo computer, in aula, per ridefinire orizzonti e prospettive.

Grazie alla fortunata possibilità di interpellare direttamente i fruitori della sperimentazione, sono stati raccolti molteplici dati significativi. Gli strumenti utilizzati sono stati quelli caratteristici dell’indagine qualitativa, come ad esempio le interviste in profondità e i focus group condotti con i protagonisti delle sperimentazioni oggetto di questo lavoro di ricerca. I risultati di questa indagine hanno condotto a conclusioni di carattere descrittivo in ordine ai micro-
contesti scolastici studiati. La scoperta delle tecnologie in classe ha permesso di sperimentare una nuova dimensione scolastica: parliamo di un’attività didattica che si presta alla definizione di “scuolafacendo”; che mette in risalto la componente esperienziale e pratica dell’apprendimento.

2.2. L’esperienza di MARINANDO

Durante l’incontro con l’insegnante Giuseppe Moscato, attualmente distaccato presso INDIRE, abbiamo appreso di un’esperienza didattica importante chiamata “MARINANDO” (acronimo che sta per MAREttimo in ambienti di apprendimento online). L’iniziativa si sviluppa durante l’anno scolastico 2007-2008 all’interno di un disegno più ampio che vede protagoniste le scuole delle isole minori italiane. Il problema dell’isolamento delle scuole appartenenti alle isole minori viene affrontato per la prima volta con il progetto SCOLA (Sviluppo collaborativo on-line learning object autoprodotti), finanziato con i fondi strutturali europei e sostenuto dalla Direzione generale per le relazioni internazionali del Ministero dell’Istruzione. L’obiettivo principale è progettare e costruire, nella forma della collaborazione online, percorsi formativi basati sull’uso delle tecnologie didattiche attraverso Internet. Non si tratta solo di offrire opportunità alle scuole di gestire progetti, ma anche e soprattutto di creare le condizioni per costituire una comunità di docenti e studenti poi. È in questo contesto che nasce anche il progetto MARINANDO, anch’esso finanziato con i fondi strutturali europei e sostenuto dalla Direzione generale per le relazioni internazionali del Ministero dell’Istruzione.

Tra i fautori di questa iniziativa, la professoressa Ermelinda Guarino dell’istituto comprensivo “B. Mineo” di Favignana si avvale di una delle misure previste dal PON (Programma operativo nazionale) per realizzare qualcosa che fino a un momento prima era impensabile: la scuola vicino a casa, anche in luoghi condizionati da un pesante isolamento geografico. Attraverso il contri-
buto dell’ANSAS, riesce a contattare due scuole fiorentine che si rendono disponibili per partecipare a una sperimentazione. L’esperienza è stata anche documentata da un filmato a testimonianza dell’impegno e dell’entusiasmo di tutti coloro che l’hanno resa possibile⁶.

2.2.1. La scuola vista da uno schermo: nascita ed evoluzione del progetto

La protagonista del progetto MARINANDO⁷ è Marettimo, l’isola più piccola delle Egadi in provincia di Trapani. Si tratta di un intervento di educazione a distanza centrato non solo sull’apprendimento in sé, quanto piuttosto sull’attivazione di un processo di integrazione degli studenti non attraverso l’interazione diretta, ma a distanza, con un gruppo classe tradizionale. Una situazione di isolamento viene in tal modo trasformata dalla scuola tecnologica in una realtà stimolante, che consente di mantenere saldo il diritto di poter studiare nei luoghi in cui si è nati, restando a casa propria.

Tutto prende avvio da una difficoltà oggettiva: una classe non può essere ritenuta tale se non si raggiunge il numero minimo di iscritti necessario per costituirla. Ma due soli studenti non sono sufficienti. Formalmente l’Ufficio scolastico provinciale può garantire l’insegnamento delle discipline logico-matematiche e quello della lingua italiana; può dunque mettere a disposizione due soli insegnanti. Per garantire agli studenti una preparazione anche nelle altre materie scolastiche, in teoria, dovrebbero intervenire e supplire in qualche modo le famiglie. L’unica alternativa per riuscire a fornire un normale servizio scolastico resta il trasferimento dei due alunni in una scuola della provincia di Trapani. Dunque, affinché i due ragazzi di Marettimo possano fruire del loro diritto-dovere di frequentare la scuola dell’obbligo devono abbandonare l’isola e con essa il contesto socioculturale in cui sono nati e cresciuti, senza considerare le problematiche che le famiglie dovranno affrontare trasferendosi con loro. L’iniziativa del progetto nasce in seno a un disagio che non è limitato all’isola in questione e non si presenta per la prima volta: esso si sviluppa quindi all’interno di un disegno più ampio che vede protagoniste le scuole di altre isole minori italiane, avendo come precedente la sperimentazione SCOLA, di cui abbiamo fatto menzione. Il progetto, nella sua specificità, ha cercato di raggiungere gli obiettivi che riassumiamo nei seguenti punti:

- fornire contenuti didattici in un contesto di classe;

⁶ Per una trattazione dettagliata è possibile visionare on-line l’articolo di Moscato in http://www.indire.it/content/index.php?action=read&id=1496 (ultimo accesso 12 luglio 2013).
creare opportunità di socializzazione tra i ragazzi;
• allestire in classe uno scenario inclusivo, nel quale integrare la presenza di dispositivi tecnologici digitali dalle potenzialità avanzate.

Data la caratteristica sperimentale del progetto, non è stata elaborata a priori una programmazione dettagliata delle azioni da svolgere. Piuttosto è stato prefigurato uno scenario generale, di cui daremo conto fra poco, e sono stati messi a disposizione alcuni strumenti tecnologici di tipo sincrono e asincrono, che hanno permesso di svolgere l’attività didattica.

2.2.2. Sviluppo di un modello e dispositivi tecnologici utilizzati

Il gruppo di docenti e ricercatori dell’ansas, durante la fase di ideazione e sperimentazione, non ha potuto fare riferimento a esperienze di carattere scientifico simili. Uno degli obiettivi impliciti è stato, infatti, lo sviluppo di un modello metodologico, pronto a fare da apripista per tracciare le linee guida di un format di riferimento replicabile in situazioni differenti, che però presentassero gli stessi vincoli problematici. I problemi emersi nella sperimentazione hanno consentito di creare un terreno fertile per la ricerca di nuove soluzioni e strategie didattiche a beneficio di allestimenti sperimentali successivi.

Nonostante l’assenza di precedenti con caratteristiche rapportabili al caso di Marettoni, ha tuttavía suplito e fatto da modello l’esperienza di formazione e-learning che si è diffusa in questi ultimi anni, riconducibile al fenomeno del proliferarsi di università telematiche che promuovono un modello di formazione a distanza, definito anche blended. Il consorzio “Nettuno” (insieme a diversi atenei italiani) è espressione di un approccio didattico diversificato che arricchisce sempre di più l’offerta formativa tradizionale che si svolge in aula, associando alla didattica in presenza la possibilità di fruire del percorso universitario a distanza, avvalendosi proprio delle moderne tecnologie e delle molteplicità di impiego che esse offrono. La diffusione del fenomeno ha certamente permesso di studiare delle ipotesi attendibili per la riuscita di questa prima fase del progetto. Pertanto è stata data particolare attenzione all’interazione didattica avvenuta in un contesto caratterizzato da una modalità comunicativa a di-

8. Per maggiori informazioni sulla terminologia cfr. il Glossario.
stanza, strategia attivata per consentire ai due scolari di Marettimo di entrare in contatto con gli allievi delle scuole fiorentine.

Questi i principali obiettivi dell’azione sperimentale:

- incrementare le competenze di base nel curriculum scolastico relativamente alle aree linguistica e scientifica;
- acquisire competenze nell’utilizzo di una piattaforma interattiva e di altri strumenti di comunicazione e condivisione;
- favorire un apprendimento centrato sullo studente promuovendo la collaborazione tra pari.

Le tecnologie messe a disposizione e finanziate dal pon per la scuola di Marettimo e dall’ANSAS per le scuole fiorentine possono essere distinte in base a due funzioni:

- tecnologie dedicate allo svolgimento delle lezioni in classe (server di multi-conferenza, videocamere, mixer, microfoni, diffusori, kit lavagna digitale, videoproiettore, notebook, plasma ecc.);
- tecnologie dedicate alle attività sincrone e asincrone (in particolare il software Edulab12, realizzato dal Centro elaborazione dati dall’ANSAS). Questo strumento, una sorta di laboratorio on-line, consente di condividere i materiali didattici e permette il confronto tra i docenti per la preparazione delle attività didattiche e la comunicazione con e tra gli studenti13.

2.2.3. Spunti di riflessione

La presenza dello schermo condiviso in aula nelle isole è stato il filo conduttore del percorso intrapreso in seno all’esperienza MARINANDO: i compagni di classe toscani insieme agli alunni siciliani sono apparsi sullo schermo delle rispettive classi, posizionato nelle aule sperimentali. La presenza dei devices tecnologici ha permesso di gestire la conoscenza, la comunicazione e l’interazione quotidiana, oltrepassando gli ostacoli fisici costituiti dalla notevole distanza. Si è creato nel tempo un fil rouge che ha unito gli allievi toscani e isolani sempre di più, alimentando così il reciproco desiderio di conoscersi fisicamente durante una gita scolastica programmata a conclusione del progetto, che ha consentito agli alunni di osservare in loco l’esistenza di realtà diverse rispetto alla propria. Il piano di sviluppo didattico destinato agli studenti isolani ingloba più dimensioni come, ad

esempio, la capacità di innescare cambiamenti significativi che stigmatizzano la psiche di bambini nati e cresciuti nel profondo sud.

In particolare, ci riferiamo al cambiamento socioculturale che può instillarsi nella mente dei giovanissimi non ancora plasmata e alimentata dalla diffusione di stereotipi massmediatici. Al beneficio didattico – ovvero consentire agli allievi in una condizione di disagio di continuare a fruire della normale attività scolastica approfittando delle infinite possibilità che le tecnologie dell’informazione e della comunicazione offrono – si affianca l’avviamento di esperienze formative in grado di rinnovare costumi e abiti mentali ormai sedimentati dalla trasmissione di valori consolidati dal passaggio di una generazione all’altra. Chiunque sappia che civiltà significa cultura e appropriazione del sapere (e non conoscenza libresca) concorderà con queste osservazioni.

Come ha rilevato Biondi (14), all’epoca della sperimentazione direttore generale dell’ANSAS, sull’isola si sono apportate molte migliorie contestuali all’avviamento del progetto: come le operazioni volte alla cablatura del territorio per consentire l’accesso alla rete da parte degli studenti, una novità che ha offerto, seppur momentaneamente, anche opportunità di lavoro. Miglioramenti che hanno prodotto sviluppo per l’intera zona, che poteva così accedere alla connessione Internet e utilizzarla per tutti i molteplici scopi che la rete stessa offre ai suoi utenti. Allo stesso modo durante la fase di allestimento della sperimentazione delle classi isolane sono emersi anche numerosi fattori problematici, ad esempio la difficoltà di cablare l’area interessata. I disagi più sofferti sono stati patiti dagli allievi che, intervistati, hanno riferito di momenti molto scoraggianti legati ai malfunzionamenti iniziali, comprensibili quando ancora si stanno testando per la prima volta allestimenti strumentali fino ad allora mai usati. Ma i risultati raggiunti al termine del percorso attivato dal progetto testimoniano un entusiasmo condiviso legato alla fruizione dell’attività didattica e alle notevoli migliorie infrastrutturali e logistiche destinate all’isola e alla popolazione che ha vissuto in primis la possibilità di uno sbocco lavorativo importante, seppur circoscritto alla durata dei lavori di allestimento delle infrastrutture necessarie allo svolgimento del progetto.

La prospettiva delineata apre scenari nuovi e apprezzabili, il processo di cambiamento è innescato a causa di limiti materiali e contingenti come la costituzione fisica dell’area geografica, depressa e penalizzata da disagi sociali che affondano le proprie radici nel passato. Ci sono realtà scolastiche che soffrono di una condizione disagiata che rispecchia quella del territorio (centri geograficamente isolati, comuni piccoli con tessuto sociale povero, periferie cittadine

dove la carenza di infrastrutture e servizi è problema grave ecc.; nonostante ciò, l’esperienza di Marinando insegna che provvedimenti illuminati sostenuti (per intervento delle istituzioni preposte) da pratiche improntate alla modernità, anche digitale, non solo possono favorire il pieno recupero di queste realtà “marginali”, ma fanno fiorire esperienze molto innovative, quasi paradossalmente, se si considera il contesto da cui nascono. Di qui la difficoltà a trovare spiegazioni al sistema scolastico italiano idiosincratico, restio nei confronti della modernità che offrirebbe così apprezzabili vantaggi.

2.2.4. Di che cosa ha bisogno la scuola?

La scuola ha bisogno di ridisegnare spazi e luoghi affinché siano a misura dei giovani che li abitano e li animano. Le nuove generazioni sono bisognose di riferimenti socioculturali, come sostiene Andrea Ranieri, che individua nella formazione, nel sapere e nella conoscenza gli strumenti per ripristinare un sentimento democratico di cittadinanza dell’individuo moderno, che non ha più appunto coordinate socioculturali:

La formazione, il sapere e la conoscenza diventano gli strumenti attraverso cui garantire l’esercizio della cittadinanza ed esprimere il senso democratico moderno. Attraverso essi, infatti, l’individuo impara a orientarsi, in modo da osservare i fenomeni reali e interpretare le dinamiche di cambiamento socioculturale.

Se i giovani non riconosceranno più autorità e validità alle pratiche scolastiche, perderanno dei punti di riferimento stabili e importanti per la loro crescita personale; sperimenteranno, così, un senso di disagio e sconforto che interiormente (e inconsapevolmente) li farà sentire come abbandonati a se stessi e privi di speranze per il futuro. Come scrivono Morcellini e Cortoni, si tratta di una separazione insanabile tra individuo e Stato, e fra legge e morale. Il sé non riesce a costruire, e quindi a mantenere, la sua unità. Per sfuggire a questo sentimento angoscianti che opprime, si cerca un conforto che il più delle volte è esperito nei media, nella funzione socializzante che essi svolgono per le nuove generazioni.

Un gap fra individuo e Stato, fra legge e morale; è il risultato della frammentazione del sé, che lentamente fa maturare nei giovani l’esigenza e il desiderio di scoprire e costruire nuovi corpi solidi, più coerenti con il quadro sociale che si sta configurando. A questo punto, s’innesta il ruolo e la funzione socializzante svolta dai media nei confronti delle nuove generazioni.

I giovani sono capaci di gestire la multimedialità per indole innata, ma non hanno occasioni regolamentate e istituzionalizzate dove spendere tale abilità personale. Sanno fare, ma non hanno contesti formali nei quali dimostrare il loro saper fare, non sono abilitati a esibire la loro naturale predisposizione ai mezzi di comunicazione in un contesto socialmente riconosciuto. Le nuove generazioni sono sapienti “codificatori” dei diversi input mediali: i giovani sono esplorativi, riescono dinamicamente a gestire più media senza difficoltà.

L’accresciuta disponibilità mediale rende i giovani più attivi, esplorativi e competitivi nel codificare o controllare il bombardamento comunicativo: sanno muoversi sull’asse generallismo-personalizzazione degli input mediali e culturali, tanto da essere annoverati quali simboli del cambiamento e motore del rinnovamento dei consumi culturali.

I giovani hanno un’indipendenza nell’uso delle tecnologie che li rende esperti di pratiche, prima mediali e, poi, soprattutto sociali. Hanno un sottocodice di comunicazione che gli permette di interagire all’interno del gruppo dei pari, sperimentano che cosa vuol dire essere presenti in un social network, avere una fitta rete di amici per restare sempre in contatto. Sanno gestire oggetti multimediali come immagini e suoni da scambiare con i propri amici, azionando dispositivi di trasferimento dati presenti nei loro telefoni cellulari. Questa modalità di socializzazione non viene riconosciuta dall’istituzione scolastica che, di solito, vieta tassativamente di portare in classe strumenti tecnologici non autorizzati, come appunto i telefonini. In questo modo si rischia di far subentrare nei ragazzi un sentimento di frustrazione: non riuscendo a impadronirsi di un ruolo rispetto agli adulti, essi possono, di contro, defraudare il ruolo dell’autorità imposto non riconoscendola più.

Secondo l’opinione di Alessandro Cavalli, la famiglia e la scuola sono attori fondamentali nella vita delle nuove generazioni; tuttavia, il rischio che si corre è di perdere la valenza di punto di riferimento e soprattutto di credibilità (che la scuola e la famiglia dovrebbero incarnare) rispetto alle molteplici esperienze – amplificate dagli stimoli più svariati – che i giovani vivono al di fuori degli ambienti scolastici e di quelli famigliari:

Nella condizione moderna le istituzioni tradizionalmente deputate all’educazione, come la scuola o la famiglia, incidono fortemente sull’orientamento e sulla qualità della vita delle nuove generazioni; tuttavia oggi rischiano di svuotarsi di significato nella misura in cui perdono il loro potere di impatto rispetto alle esperienze metropolitane dei giovani.

Come seconda testimonianza di una buona pratica d’uso, nel prossimo paragrafo proponiamo la descrizione di un progetto sperimentale che mostra un percorso possibile per sanare il gap comunicativo tra i codici emergenti, tipici di una cultura giovanile metropolitana – organizzata all’insegna della comunicazione digitale e ipertestuale – e quelli scolastici, legati a un passato comunicativo analogico e sequenziale, ormai troppo remoto. Le buone pratiche d’uso sono diffuse sul territorio nazionale; spesso nascono da iniziative che si organizzano dal basso e sono sostenute dall’entusiasmo del singolo docente che si propaga a macchia d’olio e coinvolge con tenacia i colleghi, gli esperti e i professionisti del settore, indirizzando tutti a lavorare sinergicamente affinché l’impegno fattivo e la forza delle idee si traducano in realtà.

2.3. Un computer per ogni studente

Il gruppo di lavoro che ha ideato il progetto “Un computer per ogni studente” è composto dal professor Dario Zucchini19, l’insegnante Paola Limone20, il professor Mariano Turigliatto, e dai docenti Antonietta Lombardi e Mirko Pellerei.

La sperimentazione ha avuto il sostegno dell’Ufficio scolastico regionale per il Piemonte e della società Olidata, che ha fornito i piccoli computer JumPC21 per allestire la tecnoclasse dell’istituto “Don Milani” del 1º Circolo di Rivoli e di Novi Ligure. Una classe quinta di scuola primaria ha avuto l’opportunità di sperimentare una didattica alternativa, nel corso della quale i computer da zainetto hanno permesso di ridisegnare spazi e relazioni, di eliminare le file costituite dai banchi, di semplificare le dotazioni tecnologiche e di consegnare al passato l’ora di informatica intesa come materia isolata e destinata a spazi circoscritti come il laboratorio di informatica. Come hanno dichiarato Limone e Zucchini, avere a disposizione un computer tutti i giorni in classe sembra un evento così eccezionale da essere ritenuto impossibile, ma a volte la realtà è in grado di superare la fantasia:

A noi del progetto “Un computer per ogni studente” la classe di domani ci piace così: banchi belli e accoglienti, niente file e piccoli computer tra libri e quaderni. Di questi tempi parlare

20. On-line si può consultare un’intervista rilasciata da Limone (in formato podcast) che descrive dettagliatamente come è nato il progetto: http://chocolat3b.podomatic.com/entry/2010-03-25T00_00_39-07_00 (ultimo accesso 15 luglio 2013).
di computer in classe e arredi funzionali e accoglienti è davvero un sogno..., ma come ci insega il poeta, sognare ci dà la capacità di agire sulla realtà22.

2.3.1. La tecnologia usata

Come già accennato la tecnologia impiegata dalle tecnoclassi durante la sperimentazione è un portatile a basso costo: il Jumpc (cfr. fig. 1), prodotto da Olidata, con schermo da 7 pollici e peso di un chilo e mezzo. Semplice, funzionale e dalle dimensioni contenute. Tecnicamente è un derivato dell’Intel Classmate di seconda generazione, un \textit{laptop} a basso costo nato per la prima informatizzazione dei bambini nei paesi in via di sviluppo, e pertanto può essere classificato nella categoria dei net\textit{book} o degli \textit{OLPC} (One Laptop Per Child)23.

La parola \textit{netbook} è il neologismo proposto da Intel per identificare un gruppo di dispositivi portatili emergenti caratterizzati da prezzo e dimensioni contenute, dalle prestazioni moderate, ma sufficienti comunque per navigare su Internet e svolgere le più comuni operazioni con applicazioni di uso quotidiano. Il capostipite di questa generazione di computer è sicuramente XO del progetto \textit{OLPC} di Nicholas Negroponte, il prototipo che gli allievi di Limone hanno testato in classe per qualche mese riguardo le sue possibilità d’uso, per intraprendere successivamente l’esperienza con i \textit{Jumpc} di Olidata.

Con questi computer è possibile avviare una prima fase di sperimentazione che verifichi le potenzialità dell’inserimento dell’uso del “computer da zainetto” nei percorsi didattici quotidiani (dalla lingua alle scienze, dalla matematica alla storia), come strumento sia collettivo sia individuale. La presenza di questa tecnologia in classe offre agli insegnanti e agli scolari interessati l’occasione di compiere un’esperienza d’uso di strumentazioni parzialmente differenti da quelle usuali nelle scuole, in modo da acquisire una mentalità più flessibile nei confronti della tecnologia della comunicazione digitale, in continua modificazione. Esteticamente Jum\textit{pc} ha un fattore di forma equivalente a \textit{OLPC}, con spigoli arrotondati e un inserto in pelle che funge da maniglia (cfr. figg. 1, 2 e 3). Il computer è dotato di un telaio irrobustito, in grado di resistere alle cadute, e ha la tastiera impermeabile, inoltre la chiusura magnetica è priva di gancetti. Jum\textit{pc} rispetta le direttive dell’Unione europea \textit{ROHS} che regolano la presenza di materiali pericolosi all’interno delle apparecchiature elettroniche. Le caratteristiche tecniche specifiche sono: piattaforma Intel Classmate, processore Celeron M 400MHz, \textit{RAM} 512MB, flash disk 2GB, schermo \textit{LCD} 7”, Wi-Fi b/g.

22 Per una lettura integrale cfr. http://share.dschola.it/olpc/default.aspx (ultimo accesso 31 luglio 2013).
2.3.2. Gli attori della sperimentazione

I protagonisti della sperimentazione sono stati gli alunni di una classe quinta di scuola primaria del 1° Circolo di Rivoli e di Novi Ligure che hanno utilizzato i pc per tutto l’anno scolastico 2008-2009. Gli studenti hanno avuto la possibilità straordinaria di fare lezione tutti i giorni con i pc in classe e di portare a casa i piccoli computer. Il team di lavoro regionale che ha consentito la realizzazione della sperimentazione è composto da docenti ed esperti di nuove tecnologie, quali: Marco Guastavigna, Paola Limone, Dario Zucchini, Mariano Turigliatto, Massimiliano Abbruzzese, Eleonora Pantò, e si è avvalso della collaborazione preziosa dell’Istituto tecnico “Ettore Majorana” di Grugliasco (Torino). Olidata ha fornito per la sperimentazione 50 Jumpc più un supporto tecnico, e Microsoft e Intel sono stati presenti come partner di Olidata per la realizzazione dei Jumpc. La sperimentazione, infine, ha potuto contare anche sulla collaborazione de “La Stampa” per la lettura in classe del quotidiano e per la promozione e diffusione del progetto attraverso il suo blog24.

2.3.3. L’esperienza vista da vicino

Come sostengono Zucchini e Turigliatto\(^{25}\), ideatori e promotori del progetto, la sperimentazione, per la prima volta avvenuta in Italia, ha obiettivi molto ambiziosi. Primo fra tutti il superamento di un’impostazione simbolica, di una scuola

\(^{25}\) Componente del gruppo consiliare regionale “Insieme per Bresso”, ed ex insegnante dell’Istituto “Ettore Majorana”.

Figg. 2 e 3 – I piccoli JumPC possono essere utilizzati interagendo direttamente con il *touchpad* in dotazione come in molti altri portatili oppure (immagine in basso) con il mouse tradizionale, connesso tramite le apposite porte laterali di entrata che ogni PC possiede.
che cambia solo in superficie o in apparenza, che si limita a prevedere l’ora di informatica e che mantiene la lezione a un livello ancora cattedratico seppur affiancata dall’uso di una lavagna digitale:

L’obiettivo di usare un personal computer quotidianamente a casa e a scuola, al pari di un quaderno e non come strumento accessorio, è certamente ambizioso e non è mai stato realmente sperimentato prima. Si sposa con la certezza che vada superato il modello dell’ora di informatica, quello del libro di testo, e quello della classe con cattedra e lavagna (anche se interattiva) retaggio di una scuola solo innovativa in superficie, ma ancora in realtà ancorata a modelli e culture del passato.

Il gruppo di lavoro dal quale è nato il progetto “Un computer per ogni studente” è composto da docenti di scuola superiore e di scuola primaria che da anni si occupano di tecnologie dell’informazione e della comunicazione applicate alla didattica; il che ha permesso l’applicazione di un’impostazione metodologica comune, garantendo così un approccio didattico che è andato oltre alla gestione “vecchia maniera” del *device* tecnologico, ma che lo ha valorizzato come pretesto per sollecitare una didattica collaborativa, all’insegna di metodologie tipiche del *cooperative learning*. Il team, infatti, è stato capace di stimolare un uso tecnologico trasversale ed esperienziale, volto allo sviluppo, negli allievi, di abilità metacognitive e critiche, oltre che creative e dinamiche.

Per una realizzazione positiva della sperimentazione i docenti si sono occupati di configurare e predisporre una dotazione di software e schede didattiche il più possibile congruenti con le esigenze degli scolari. Il lavoro sinergico è stato fondamentale per consentire ai docenti di usare al meglio i JumPC in classe. I computer sono stati attrezzati e corredati anche da un’esclusiva *whitelist* di quasi 1.000 siti adatti alla navigazione in Internet di un target così particolare, oltre che da una selezione di 70 attività da svolgere sul web. I *netbook*, che sono stati consegnati al 1° Circolo di Rivoli, alla direzione didattica di Pavone Canavese e al 1° Circolo di Novi Ligure (cfr. fig. 4), sono stati singolarmente preparati e configurati dagli studenti e docenti del corso IG2 dell’Istituto tecnico industriale “Majorgana” di Grugliasco. Il lavoro è stato condotto seguendo un approccio di natura complementare che ha permesso agli insegnanti coinvolti nella sperimentazione di sentirsi supportati nella risoluzione dei problemi tecnici, e allo stesso tempo ha impegnato fattivamente gli studenti dell’istituto tecnico, i quali hanno avuto la possibilità di cimentarsi in situazioni e contesti reali dove applicare i saperi appresi durante le lezioni in classe. Per l’esito positivo della sperimentazione è stato fondamentale definire in precedenza il ruolo assunto da ciascun componente del

team, come poter accedere alle risorse di supporto (siti d’interesse, software particolari, materiali digitalizzati, motori di ricerca creati ad hoc, ambienti digitali predisposti per la classe) e chi interpellare per ripristinare, qualora ce ne fosse stato bisogno, un corretto funzionamento del mezzo. Un approccio funzionale che solleva l’insegnante dall’improvvisazione e dallo scoraggiamento che situazioni di disagio tecnico o di altra natura possono generare.

La sperimentazione svolta in più classi di scuola primaria ha consentito all’allievo di portare il pc sia a scuola sia a casa, come un normale libro o un quaderno, e di considerare la tecnologia in questione come parte integrante dell’attività didattica quotidiana anziché come un mero accessorio da relegare nel laboratorio di informatica.

2.3.4. Le origini del progetto

Come racconta Paola Limone, insegnante di scuola primaria che ha gestito la sperimentazione nella classe quinta del 1° Circolo di Rivoli, il progetto è nato così:

Nel corso dell’anno scolastico 2008-2009 io e i miei allievi abbiamo avuto in classe per alcune settimane due XO acquistati negli USA e quindi con interfaccia in inglese. I bambini avevano l’esplicito incarico di: provare la dotazione software originariamente disponibile su XO, “gio-cando” con tutti i programmi; riflettere sull’utilità dei programmi e valutare la qualità; an-
notare eventuali difetti. Al nostro gruppo di lavoro interessava verificare quale fosse il giudizio globale sul *laptop* di Negroponte\(^\text{27}\) da parte di bambini occidentali: i miei allievi, infatti, utilizzano con una certa frequenza le tecnologie a scuola come supporto all'apprendimento e molto spesso a casa hanno a disposizione e usano computer con collegamento a Internet, console di giochi, macchine fotografiche digitali, lettori di musica e video digitali. Da questa prima esperienza durante l’estate è nata l’idea di un progetto più in larga scala, che prevedesse l’effettivo uso, a casa e a scuola, di un computer portatile da parte di ogni bambino. L’intenzione iniziale era di richiedere computer XO per alcune classi e JumPC per altre, ma per problemi non dipendenti dalla nostra volontà e riconducibili piuttosto alle difficoltà di prenotazione dei computer di Negroponte il progetto è partito nel mese di ottobre con i soli JumPC\(^\text{28}\).

Questa sperimentazione risulta caratterizzata dalla predisposizione di un terreno di lavoro fertile, pronto ad accogliere positivamente l’inserimento dei JumPC in classe. Indurre gli allievi a riflettere sulla dotazione software disponibile su XO, interagendo con i programmi e valutando qualità e difetti, è il banco di prova che consente al gruppo di lavoro di testare e considerare come possibile l’avvio formale della sperimentazione per l’anno scolastico successivo. Nulla è lasciato al caso, ogni intervento sperimentale è ben ponderato e strutturato dal lavoro fattivo che si è sedimentato nel corso degli anni. Stiamo descrivendo, infatti, una realtà che si regge ben saldo su vari pilastri operativi, che fondano la loro ragione d’essere su un modello collaborativo consolidato, già rintracciabile a partire dai primi anni del 2000:

Nel triennio che va dal 2000 al 2003 il “Progetto Scuole”, per il Piemonte e la Valle d’Aosta, (a oggi concluso) è stato promosso e finanziato dalla Fondazione CRT [Cassa di risparmio di Torino]. Il finanziamento del progetto è passato poi in carico alla Regione Piemonte dall’anno scolastico 2003-2004. Gli aspetti organizzativi operativi del “Progetto Scuole” erano affidati al CSI-Piemonte [Consorzio per il sistema informativo piemontese], cui era chiesta la realizzazione del piano di attività, la gestione dei rapporti con i soggetti interessati, e la creazione di una rete scolastica a cui aveva aderito circa il 90% delle scuole piemontesi. Da questo progetto è nato un nuovo modello collaborativo all’interno del mondo scolastico, grazie all’attività di supporto e consulenza fornita dai Centri Dschola. Si tratta di una rete di scuole tecniche superiori, distribuite sul territorio, che garantisce a tutti oggi assistenza tecnica, supporto alla progettazione e formazione a tutte le altre scuole del territorio. La prima fase della sperimentazione “Un computer per ogni studente” si colloca quindi in modo naturale in un contesto in cui la collaborazione fra scuole è una realtà vivace e consolidata sul territorio piemontese. L’Istituto “Majorana” è uno dei 18 Centri Dschola ed è la scuola che ha preparato con l’ausilio dei propri studenti tutti i computer che sono stati con-

Il gruppo di lavoro dal quale è nato il progetto “Un computer per ogni studente” è composto da docenti di scuola superiore e di scuola primaria che da anni si occupano di tecnologie dell’informazione e della comunicazione (TIC) applicate alla didattica. Il professor Dario Zucchini è docente di informatica e responsabile TIC presso l’Istituto tecnico industriale “Ettore Majorana” di Grugliasco, scuola ENIS (European Network of Innovative Schools), coreddattore del portale Dschola ed è conosciuto a livello nazionale per la sua abilità nell’ideare e progettare soluzioni didattiche e laboratori tecnologici allo stato dell’arte. Mariano Turigliatto, prima di diventare consigliere regionale, è stato docente di lettere sempre presso l’Istituto “Majorana” di Grugliasco. Nel 2000 in qualità di sindaco di Grugliasco ha promosso un progetto che ha consentito la realizzazione di numerosi laboratori multimediali presso le scuole del comune utilizzando il know how e la progettazione dell’Istituto tecnico (progetto “La città multimediale”)29.

La sperimentazione si colloca in uno scenario pronto a sostenere l’investimento di energie e di lavoro che essa comporta. Può contare sulla presenza di un istituto (il “Majorana”) che è fra l’altro uno dei 18 Centri Dschola e come tale svolge un ruolo territoriale consolidato nel supporto tecnologico alla progettazione rivolto agli istituti piemontesi che ne abbiano bisogno. Esso è anche la figura di riferimento che si è occupata, con l’aiuto dei propri studenti, di allestire e collaudare tutti i PC consegnati alle scuole primarie coinvolte nel progetto. Infine, il team di lavoro che ha caldeggiato l’iniziativa ha alle spalle anni di esperienza nel campo dell’introduzione delle TIC nella didattica e quindi può prestare un alto grado di professionalità in questo ambito per contribuire al raggiungimento degli obiettivi previsti.

2.3.5. La condivisione come valore aggiunto dell’esperienza formativa

Le parole di Limone, che da anni si occupa di attività legate all’inserimento delle TIC a scuola, testimoniano come un progetto così ambizioso possa realizzarsi grazie alla collaborazione di tutti i soggetti coinvolti; ripensare il processo educativo come pluridimensionale è la svolta didattica di cui la scuola ha bisogno. Riformulare il ruolo del docente può essere una mossa vincente, l’insegnante può aprirsi al nuovo per far maturare la disponibilità alla collaborazione tra i colleghi, e poi tra i docenti e le generazioni di alunni che si succedono negli anni. Un approccio collaborativo può certamente apportare dei risultati diversi negli apprendimenti e nella motivazione di ogni singolo studente. Riuscire a connettere la dimensione astratta dei saperi appresi a scuola, in classe, con la dimensione concreta dell’esperienza e della vita può rinnovare – se non del tutto almeno in parte – la scuola e i riti che in essa si consumano.

29. Per una lettura più esaustiva cfr. Limone, Un computer per ogni studente, cit.
È infatti nella parola “collaborazione” che identifichiamo uno strumento valido per ottenere dei buoni risultati. Vale come esempio proprio l’esperienza degli studenti dell’itis “Majorana”: supportando tecnicamente le classi che ospitavano i pc, sono stati gli alunni stessi a intervenire ogni qual volta si fosse verificato un problema tecnico. La possibilità di vivere quindi un’esperienza fattiva ha permesso loro di sperimentare che cosa significhi mettere in pratica gli insegnamenti scolastici in un contesto reale. La manifestazione di un impegno concreto diretto al sostegno degli insegnanti gli ha consentito di dare un senso significativo all’attività didattica svolta a scuola, tramutando un apprendimento formale in un apprendimento concreto. In questo modo si è riusciti a responsabilizzare i ragazzi, che hanno avvertito un senso di partecipazione molto forte al raggiungimento di un obiettivo di gran lunga più motivante del semplice superamento di un’interrogazione o di un buon voto riportato dal giudizio finale del docente.

All’insegna del medesimo principio di collaborazione si può constatare come anche gli insegnanti abbiano tratto vantaggio dalla diffusione e condivisione dei materiali di lavoro. Questa modalità cooperativa rappresenta una risorsa indispensabile per arricchire il kit di strumenti di lavoro a disposizione del singolo docente. È un valido punto di partenza per iniziare e poi per ampliare e modificare l’attività didattica pensata per la classe che si ha di fronte. Inoltre, con i supporti tecnologici digitali, e le molteplici possibilità offerte dalla rete, tale pratica può essere svolta con molta semplicità. Come sostiene infatti Limone, il processo di condivisione è uno strumento che valorizza il lavoro del singolo docente e gli consente di rendere note esperienze altamente positive, che altrimenti rimarrebbero confinate all’interno della classe nella quale avvengono.

Il progetto “Un computer per ogni studente” ha previsto, fin dai primi passi, che il materiale prodotto dal gruppo di lavoro fosse messo a disposizione di tutti in rete: schede tecniche e didattiche, suggerimenti per la configurazione dei computer, elenchi dei programmi installati e suggerimenti di attività e percorsi attuabili, riflessioni sull’uso delle tecnologie dell’informazione e della comunicazione nella didattica, programmazioni di classe, relazioni sul lavoro in corso di svolgimento. A supporto della comunicazione ci è stato offerto anche un blog nelle pagine del quotidiano “La Stampa”: è in questo spazio che noi docenti raccontiamo i passaggi più significativi del nostro lavoro in classe, linkando materiali prodotti dai bambini e documenti che possono essere utili o interessanti per chiunque stia seguendo il progetto. Voglio qui sottolineare l’importanza della condivisione che in questi anni mi ha permesso di conoscere le migliori esperienze didattiche portate avanti sul territorio nazionale e i prodotti più significativi di scuole e docenti. La rete di relazioni si è arricchita nel corso degli anni e ha portato alla nascita del portale per bambini “Siete pronti a navigare?”, del portale per docenti e del motore di ricerca “Ricerche maestre”, ora a disposizione dei

31. “Ricerche Maestre” è un motore di ricerca per bambini, genitori e maestri che seleziona siti scelti da
bambini anche sui JumPC. Non sarebbe stato possibile progettare in modo così dettagliato la configurazione dei computer senza uno studio attento dei migliori software utilizzabili nella didattica e delle esperienze didattiche significative e replicabili che con essi altri insegnanti hanno saputo proporre. L’alto grado di condivisione nel caso specifico del progetto fa sì che esso sia replicabile in tutte le realtà che vorranno riproporlo.

2.3.6. Un computer a misura di bambino: come cambia la didattica in classe

Quando si parla di inserimento delle tic a scuola si tende a ragionare di metodologia, di didattica e di software lasciando sullo sfondo il problema dell’organizzazione degli spazi e quindi dell’hardware e delle infrastrutture necessarie. Finché le tic sono rimaste confinate nel laboratorio informatico non si ponevano tanti problemi, ma negli ultimi anni lo scenario di riferimento sta cambiando: la vecchia lavagna è stata sostituita dalla lim e si sono formate classi sperimentali che ospitano direttamente in aula dei piccoli computer destinati a ogni singolo scolaro.

Il fervore delle sperimentazioni sempre più diffuse sul territorio è testimonianza di un fermento e di una visione moderna che si oppone a un panorama soltanto analogico: niente più alunni composti e seduti, buoni e zitti con il viso rivolto all’insegnante e alla lavagna, ma scolari disposti nell’economia spaziale della classe in cerchio, che guardano i loro piccoli Jumpc, pronti a “gestire” i netbook con il sostegno dell’insegnante, con l’aiuto dei compagni, ma soprattutto in autonomia. È un nuovo modo di fare didattica che genera cambiamento e innovazione senza dimenticare, però, che la presenza del computer o di qual si voglia device tecnologico non è sufficiente per generare l’innovazione del metodo. È necessario rivedere e rielaborare l’organizzazione didattica delle ore trascorse in classe con gli allievi. La lezione frontale comincia a mostrare punti di debolezza; l’insegnante deve trasformare il proprio ruolo da elargitore di saperi a coordinatore dell’azione didattica in classe.

esperti insegnanti della scuola primaria. Si possono trovare risorse scolastiche per la scuola elementare e si può navigare all’interno di siti adatti a bambini dai 3 ai 14 anni, cercando contenuti educativi e di svago (http://www.ricerchemaestre.it – ultimo accesso 31 luglio 2013).

33. Un esempio è offerto dalle esperienze dell’Istituto tecnico “Pacioli” di Crema, dove è stata sperimentata un’iniziativa di Cl@sse 2.0. I 400 alunni delle prime classi sono stati dotati di computer a supporto dell’attività didattica e in sostituzione dei libri di testo. Per gli sviluppi più recenti di queste sperimentazioni ad alta tecnologia cfr. le pagine dei progetti sul sito ufficiale dell’Istituto (http://www.pacioli.net/it/index.php?option=com_content&task=view&id=666 – ultimo accesso 31 luglio 2013).

34. Le sperimentazioni citate sono solo degli esempi di un fenomeno che ha come protagonista la diffusione di pratiche generate dal basso.

35. «Un computer per ogni scolaro: sembra essere il futuro delle nostre classi. Che la vecchia ora di informatica sia soltanto un brutto ricordo? Docenti ed ex alunni ricorderanno umoristicamente le volte che non
PC nella didattica quotidiana cambia dinamiche relazionali e metodologiche e si ripercuote sugli apprendimenti: emerge così un fare scuola che si costruisce insieme ai bambini. Significa farli sentire coinvolti in uno spazio altro nel quale si può raccontare, imparare e crescere insieme all’insegnante e ai compagni.

Sperimentazioni così articolate necessitano di una forte progettazione a priori, pena un esito negativo del progetto. Per questa ragione i PC sono stati allestiti appositamente, in una fase precedente l’inizio dell’attività scolastica, per essere in tutto e per tutto a misura di bambino. I piccoli JumpC in comodato d’uso sono stati dotati di un kit didattico con software prevalentemente libero. Sono state adottate misure preventive per tutelare la sicurezza della navigazione in rete degli scolari e le aule sono state predisposte per il collegamento Wi-Fi. Nel browser di navigazione si è optato per l’assenza della barra degli strumenti per l’inserimento libero degli indirizzi, in favore di un elenco accessibile di circa 1.000 siti. La passa

Fig. 5 – Lo spazio fisico della classe è cambiato: i banchi sono disposti in cerchio e gli alunni si guardano a vicenda interagendo con i compagni e con i JumpC.

Foto di V. Zagami
sword per la navigazione è conosciuta soltanto dai docenti e dai genitori. L’interfaccia, che si avvia all’accensione, è stata elaborata per essere accattivante e allo stesso tempo usabile da un pubblico così particolare: infatti, ci sono grandi icone colorate e bauli che contengono giochi e programmi. Il word processor ha il simpatico aspetto di un quaderno ad anelli da sfogliare che mostra tutti i programmi installati. Gli alunni durante le attività didattiche in casa, collettive e individuali, hanno usato Office, offerto da Microsoft, per esercitazioni grammaticali, giochi linguistici, riassunti e articoli giornalistici, programmi per il disegno, per la produzione di libri dinamici, per mappe mentali e concettuali. Largo spazio hanno avuto webcam, registratore di suoni e ambienti per montaggio di filmati e animazioni. Le famiglie degli alunni sono state coinvolte con un incontro esplicativo, dove è stato formalizzato un accordo casa-scuola all’atto della consegna del computer al bambino, concretizzando procedure di lavoro sinergiche che coinvolgano fattivamente le famiglie all’interno della vita scolastica dei propri figli.

2.3.7. Learning by doing

L’espressione learning by doing è utilizzata per definire una strategia didattica particolareggiata che può essere descritta attraverso l’espressione “imparare facendo”, basata sull’apprendimento attraverso l’esperienza. Come sostengono Fasolino e Moscato, «il learning by doing è un approccio di riferimento che ben si adatta alle dimensioni interattive della rete, e viene spesso utilizzato nelle proposte più evolute dell’e-learning»36.

Siamo convinti che si possa praticare positivamente l’apprendimento per esperienza, per scoperta, come infatti è accaduto durante la sperimentazione che ha animato le tecnoclassi protagoniste del progetto fin qui descritto. Gli studenti hanno appreso in classe navigando in rete del declassamento di Plutone a pianeta nano, a differenza di quanto invece era ancora indicato dai libri di testo, che necessitano di tempi lunghi per accogliere progressivi aggiornamenti dei contenuti. Come testimonia Limone, attualmente responsabile e supervisore per le attività di replica della stessa sperimentazione in altre scuole del Piemonte, l’azione didattica è stata caratterizzata da attività per scoperta, che hanno contraddistinto l’organizzazione della lezione in classe:

L’acquisizione di nuove scoperte durante la normale attività didattica è stata molto frequente. Abbiamo scoperto in rete che dal 2006 Plutone è stato declassato, mentre sui nostri libri di testo era ancora annoverato tra i pianeti… Nessun libro di testo parla ovviamente delle ultime disavventure del telescopio Hubble: avendo seguito a casa i notiziari televisivi i

36. Fasolino, Moscato, Quando la scuola si affaccia sulla rete, cit.
bambini hanno però posto varie domande e così abbiamo seguito in diretta, grazie a video e fotografie, il lancio della missione per la sua manutenzione avvenuto l’11 maggio 2009 [...]. Abolita la lezione frontale, si parte dalle preconoscenze degli allievi, si affrontano problem solving, si sperimenta cercando risposte alle tante ipotesi che nascono dalle discussioni. Il computer in aula ci ha permesso di fotografare gli esperimenti, di stilare mappe mentali all’inizio del percorso (quando ognuno racconta ciò che sa sull’argomento proposto), e concettuali quando infine è necessario mettere ordine tra i nuovi concetti acquisiti e le conoscenze pregresse. È bene precisare che in classe abbiamo prodotto mappe anche senza netbook, con lavagna d’ardesia, cartelloni e quaderni. JumPC ci ha permesso però di dividervi in rete e di modificarle e accendere a distanza di tempo. E così gli allievi, ormai passati alla secondaria di primo grado, hanno ancora la possibilità di prendere visione di tutte le loro mappe personali e, se dotati del programma gratuito sul computer di casa (CmapTools), di modificarle e ampliarle in qualsiasi momento37.

La lezione frontale non è più considerata come la modalità esclusiva da proporre in classe, infatti è spesso sostituita da un’impostazione dinamica che richiama l’attenzione degli alunni a riflettere su problematiche di interesse attuale. Il dibattito prende avvio dalle conoscenze iniziali dei singoli studenti e procede per problematizzazione degli argomenti. Si dà spazio a ipotesi risolutive differenti, educando gli allievi al confronto con il concetto di alterità, oltre che a ragionare in termini di problem solving.

La presenza del pc in classe ha permesso di documentare tutte le attività svolte in formato digitale, di condividere i documenti raccolti in rete con altri interlocutori e di modificare e implementare le attività anche a distanza di tempo. Gli studenti iscritti a un livello superiore di scuola hanno ancora la possibilità di rivedere il materiale didattico personale, e di aggiornarlo ogni qual volta lo reputino opportuno. Una sorta di portfolio digitale in fieri, che può essere ampliato in qualsiasi momento della carriera scolastica dell’alunno. La possibilità di consultare la rete in classe è considerata come un valore aggiunto all’attività dell’insegnante, che grazie a essa, ha proposto momenti di approfondimento tematico su argomenti di attualità che altrimenti non sarebbe stato possibile affrontare con l’ausilio esclusivo dei libri di testo. Vale l’esempio del telescopio Hubble e delle operazioni spaziali che i notiziari televisivi diffondevano con dovizia di particolari, incuriosendo moltissimo i bambini e inducendoli a porre varie domande a tal punto da voler seguire in diretta, con video e fotografie, il lancio della missione per la sua manutenzione avvenuto a maggio 2009.

L’opportunità di costruire delle mappe digitali ha permesso agli allievi di avere

un *repository* personale sempre ampliabile, e agli insegnanti di utilizzare questo strumento come modalità di verifica del lavoro svolto dagli alunni stranieri, facilitando l’*iter* della prassi valutativa. La ricerca in rete finalizzata al conseguimento di un obiettivo ben strutturato risulta complessa per gli allievi, per questo è indispensabile che l’insegnante progetti un percorso stabilito che sia di sostegno all’alunno per individuare parole chiave, utili per una selezione efficace delle informazioni.

Altro elemento di rilievo è stata la fase di confronto spontaneo tra i ragazzi sulle mappe realizzate: confronto che non è mai stato finalizzato a votare la mappa più bella, ma a riconoscere elementi comuni, negoziare su concetti aggiunti o esclusi, discutere legami legittimi o meno tra i concetti. Le mappe, inoltre, si sono rivelate molto utili ai ragazzi per facilitare la relazione su quanto appreso, aiutare la concentrazione e la memorizzazione dei concetti che permettevano poi di ampliare la loro relazione. Nel caso di un alunno straniero di recentissimo inserimento nella nostra comunità linguistica, abbiamo somministrato verifiche costituite solo di semplici mappe da completare: i risultati sono stati molto incoraggianti. Anche le ricerche fatte in gruppi tramite sussidiari e libri scientifici hanno avuto il potente ausilio della rete Internet in classe: preparavo in precedenza le domande e segnalavo le pagine web più adatte per rispondere. Abbiamo rilevato che – per lo meno per bambini principianti come i nostri, la cui disinvoltura con il PC è dovuta a pratiche di intrattenimento – la vera e propria ricerca in rete è difficile: è necessario progettare percorsi che li aiutino a capire come individuare parole chiave per una ricerca mirata in cui, almeno inizialmente, la preselezione delle pagine web da parte dei docenti è indispensabile

Gli insegnanti hanno strutturato le attività didattiche per raggiungere obiettivi fondamentali, come ad esempio saper produrre testi, essere in grado di associare immagini congruenti a un testo dato, e riuscire a lavorare in gruppo per sviluppare un progetto comune. La capacità del digitale di esplorare dimensioni multiprospettiche ha reso possibile la composizione di varie tipologie testuali, anche inusuali. Gli alunni con qualche difficoltà a narrare in forma scritta hanno avuto grande beneficio dai codici tipici della multimedialità, che ha permesso di veicolare attraverso forme più complesse il proprio saper fare, offrendo un mezzo di espressione alternativo e a loro più congeniale. Infatti, sono stati prodotti dagli alunni libri digitali, ricchi di storie create in gruppo e poi condivise in rete e in classe con l’uso del videoproiettore. Di seguito le considerazioni dell’insegnante Limone che descrive tutte le fasi operative preliminari al conseguimento degli obiettivi didattici strutturati in fase di progettazione.

Abiamo individuato alcuni obiettivi essenziali: saper scrivere semplici testi, saper inserire immagini congruenti, saper progettare in gruppo; su questa base abbiamo guidato i bambini all’elaborazione di alcuni tipi di testo: diari personali, riassunti, poesie-filastrocche, storie col-

laborative e storie-gioco. La flessibilità offerta dal supporto digitale ha permesso ai bambini di progettare, discutere, scrivere, correggere, verificare, arricchire, cancellare e integrare parti di testo, adeguandolo al proprio lavoro alle richieste dell’insegnante e alle esigenze del gruppo e condividendolo con altri, anche in rete [...]. Il correttore automatico del word processor ha invece favorito l’analisi di quanto scritto da parte di molti altri allievi, i quali si interrogavano sul possibile significato di una sottolineatura, a volte capendo da soli l’errore, a volte chiedendolo al docente. È stato di grande utilità il lavoro in piccoli gruppi con scambio dei computer e segnalazioni. Abbiamo prodotto libri digitali: i bambini hanno scritto storie da soli e in gruppo, le hanno condivise in rete, per poi leggerle e analizzarle con l’ausilio di un video-proiettore. Anche le storie-gioco sono state un validissimo strumento didattico. I bambini, in gruppi, preparavano la mappa di una storia: dopo un cappello iniziale, dovevano offrire al lettore, nel corso della narrazione, la possibilità di scegliere tra diverse opzioni, con percorsi e finali differenti. Hanno così imparato a progettare in gruppo, a collegare alcune parole o frasi a pagine diverse del proprio racconto in progress [...]. L’uso del computer ha consentito di inserire brevi animazioni, disegni, fotografie scattate al momento con le webcam o precedentemente salvate su chiavetta USB. Gli scolari hanno imparato a inserire nei libri digitali registrazioni della loro voce o brani musicali. Abbiamo dedicato molto spazio anche alla produzione di brevi video utilizzando fotografie, disegni, testo e musica: guide turistiche della città di Rivoli condivise con i compagni di classe o gruppi di alunni di altre classi partecipanti al progetto, spot sul risparmio energetico, video sulle stagioni (poesie, musica e disegni), autoritratti dinamici, modificati con il ritocco fotografico. Molti degli alunni in difficoltà a raccontare solo in forma testuale hanno avuto grandi miglioramenti grazie all’usodella multimedialità.

La presenza del computer ha aperto il varco a una nuova dimensione scolastica volta alla prassi. Si può apprendere in tanti modi: immaginiamo ad esempio una situazione artificiale e solitaria che fa da sfondo ai nostri alunni séduti davanti alla pagina scritta di un sussidiario. A questa immagine accostiamone un’altra, dove i nostri allievi apprendono sperimentando in modo collaborativo e facendo esperienza di una pratica concreta; traendo il maggiore beneficio da attività interattive ad alto contenuto sociale predisposte dall’insegnante per la risoluzione di un problema concreto. In un’ottica costruttivista, che pone il centro del processo di apprendimento colui che apprende, insieme al contesto interattivo nel quale è immerso, il trasferimento di conoscenze, abilità o competenze può avvenire in modo naturale. Ciò significa che si può imparare in ambiti dove viene stimolata l’interazione tra pari, tra i compagni di classe o tra gruppi di alunni di altre classi, come testimonia l’esperienza delle tecnoclassi. Le attività gestite in classe da Limone e Lombardi (rispettivamente insegnanti del 1º Circolo di Rivoli e di Novi Ligure) sono state improntate a un paradigma che interpreta le tecnologie come luoghi simbolici ricchi di significati stratificati, ovvero come ambienti semantici di collaborazione, capaci di stimolare e sviluppare pratiche didattiche socializzanti.

40. P. Limone, Innovazione quotidiana cit.
41. Per una trattazione diffusa cfr. capitolo 1, paragrafo 5.
Le buone pratiche d’uso descritte testimoniano che si possono creare momenti aggreganti tra gli studenti: sistemi inclusivi che coinvolgono gli alunni della stessa classe, ma anche di classi d’istituto differenti. Come ha raccontato Lombardi nell’intervista effettuata durante l’attività di ricerca, gli alunni della classe 5a B hanno appreso dai compagni di scuola media superiore come creare una mappa concettuale. Dopo aver spiegato agli alunni più piccoli il processo ideale generativo di una mappa concettuale, i bambini hanno contribuito con il loro sostegno alla produzione di più rappresentazioni sensibili di mappe topografiche di luoghi fisici differenti. Il processo ha registrato ripercussioni sull’autostima dei ragazzi più grandi, che sentendosi depositari di un saper fare si attribuiscono un ruolo personale fattivo; in secondo luogo, nei ragazzi più piccoli, nei quali si è generato un sentimento di coinvolgimento molto forte che ha indirizzato la motivazione e lo stimolo ad apprendere verso l’atto di relazionarsi con il gruppo dei pari. Tale pratica ha trovato il pieno compimento nella condivisione delle mappe in rete. Esse sono state prodotte da studenti dello stesso istituto di età differente, e poi condivise con altre mappe prodotte da studenti stranieri. La condivisione è avvenuta in momenti dedicati di videochat e videoconferenza, il tutto caratterizzato da un’assenza fisica ma da una compresenza digitale. Gli studenti condividevano le mappe – frutto di un’attività didattica collettiva – prima tra di loro e poi con altri studenti che risiedevano in Panama, alunni di una scuola aderente a un progetto di intercultura (in corso durante il periodo della sperimentazione). L’azione si svolgeva in sincronia, e grazie all’ausilio di Internet il materiale prodotto restava a disposizione di tutti gli studenti e accessibile a ciascuno tramite i computer. Gli alunni hanno espresso commenti e osservazioni entusiaste rispetto alle attività di condivisione avvenute con gli studenti di Panama e riguardo all’attività di apprendimento all’interno del gruppo dei pari. Sollecitati dalle domande poste dal ricercatore nel corso di un’intervista hanno raccontato che: «Elaborare delle mappe con gli studenti più grandi, per produrre delle rappresentazioni grafiche della loro città e dei luoghi dove risiedono, è servito per conoscere davvero il territorio e la regione in cui abitano». La possibilità di far conoscere i luoghi autoctoni ai ragazzi che risiedevano in Panama (è accaduto anche il contrario, gli alunni stranieri hanno condiviso in rete le mappe create appositamente per i compagni italiani) è stato un incentivò molto gratificante. La fruizione delle mappe create da ragazzi e destinate ad altri ragazzi come loro ha permesso agli studenti di avere familiarità con luoghi che altrimenti sarebbero rimasti sconosciuti.

Possiamo concludere che la presenza in classe delle tic ha il vantaggio di rompente di mettere in discussione categorie consolidate nel tempo – ovvero

42. L’intervista è riportata in versione integrale nell’Appendice, paragrafo Incontro con gli esperti (p. 105).
prefissate, che restringono da sempre i campi del fare scuola a strumenti e luoghi prestabiliti come la classe, il libro e la cattedra. Riconoscere il valore aggiunto offerto dalle tecnologie digitali induce a riformulare il senso del “fare scuola” alla luce di un potenziale strategico offerto da strumenti che sembrano, a prima vista, innocui, se non futili. La possibilità di restituire autorevolezza a una professione che ha come missione socioeducativa il compito di rivolgere alle nuove generazioni valori e simboli collettivamente condivisi è un’arma che non può essere sottovalutata. Le tecnologie possono quindi costituire un ponte che consente di creare punti di accesso, di comunicazione e di connessione con chi frequenta le aule di scuola. Scopriremo, dopo le prime diffidenze, che arricchire il kit di strumenti di lavoro è una risorsa che migliorerà il nostro fare, dando risultati vantaggiosi e senso all’attività che svolgiamo. Riportiamo di seguito il bilancio provvisorio fornito dall’insegnante Limone:

Non è la presenza del computer che genera l’innovazione del metodo: l’esperienza qui sommariamente descritta mi ha confermato che, se le lezioni sono soprattutto frontali, i vantaggi dell’utilizzo delle TIC si affievoliscono e in certi casi sono del tutto inconsistenti. Gli stessi bambini in più occasioni hanno scelto liberamente di non usare il computer per alcune attività (proposte in modo provocatorio da noi docenti) ritenendo più semplice ed efficace lavorare su carta […] Ho rilevato però anche il fatto che la dotazione di un PC a ogni studente difficilmente permette all’insegnante di mantenere una didattica di tipo tradizionale. Per noi non si è più trattato di mostrare qualcosa con l’aiuto di un videoproiettore, di chiamare a turno un allievo alla lavagna digitale o di ardesia per qualche operazione. Nella nostra aula tutti i bambini volevano e potevano fare da soli, pur prediligendo il lavoro in coppie o in gruppi. Non erano spettatori al cinema, erano attori e registi. Il ruolo dell’insegnante si è trasformato in modo naturale: da elargitore di saperi a coordinatore. A noi docenti non è più capitato di rispondere: “Non lo so, mi devo informare” a una domanda; accendevamo i computer, e andavamo a cercare una risposta che soddisfacesse la curiosità nostra e dei nostri allievi, confrontando i risultati su vari siti, per scoprire eventuali incongruenze e valutare insieme. I bambini imparavano dai compagni: c’era sempre qualcuno che aveva scoperto qualcosa e che era contento di condividerlo con i pari. La mia collega e io potevamo addirittura rilassarci: se non sapevamo qualcosa provavamo e riprovavamo con i nostri allievi, sbagliavamo e imparavamo con loro. Nessuno ha mai deriso un nostro errore (cancellazioni involontarie di lavori, ricerche senza successo di documenti salvati con disattenzione, password dimenticate) perché tutti erano coinvolti nella ricerca della soluzione. Anche gli allievi che avevano maggiori difficoltà in ambito linguistico e matematico si cimentavano con i compagni, finalmente alleggeriti da sensi d’inferiorità e, anzi, spesso erano proprio loro a trovare le strategie vincenti. È accaduto che un genitore lasciasse in giro la password che consentiva l’accesso al sistema operativo completo e quindi alla navigazione non tutelata. È passato un giorno prima che i passaparola tra compagni portassero qualcuno a riferire dell’accaduto a un altro genitore e a noi docenti: tempo più che sufficiente perché alcune bambine (sic!) andassero su Google a cercare “donne nude”. L’episodio è stato utile per ribadire l’importanza di una protezione “adulta” per i minori che, per quanto consapevoli e responsabilizzati, sono pur sempre bambini o ragazzini, con tutte le curiosità naturali alla loro età,
curiosità che possono soddisfare in pochi minuti grazie alla rete. Ci sono state anche altre occasioni per discutere di privacy e di educazione in rete (*netiquette*), e per raggiungere insieme accordi accettabili sull’uso del computer a casa e a scuola\(^{43}\).

2.3.8. Comunicazione sincrona: la chat come strumento di lavoro

Gli alunni che sono stati coinvolti nel progetto sperimentale “Un computer per ogni studente”, sollecitati dall’insegnante, hanno partecipato ad attività strutturate, caratterizzate dalla possibilità di usare lo strumento di comunicazione della chat. Questa forma di comunicazione è caratterizzata dalla presenza on-line di due o più utenti/studenti che interagiscono tra di loro in tempo reale, in modalità sincrona. L’ambiente digitale a disposizione degli scolari è stato strutturato *ad hoc* per garantire che l’accesso fosse possibile dopo una fase di iscrizione e registrazione. La comunicazione avveniva esclusivamente tra utenti coinvolti nel progetto, tutelando così la sicurezza degli studenti partecipanti. Le attività dedicate alla chat erano controllate dall’insegnante e da un moderatore che monitorava il flusso comunicativo degli utenti. I post rilasciati dagli alunni erano filtrati da questa figura di riferimento che osservava le loro attività interattive. Non sono mancati episodi in cui alcuni ragazzi hanno utilizzato in modo scorretto l’ambiente digitale per scrivere commenti offensivi nei riguardi di altri compagni. In realtà, ciò non ha costituito nulla di diverso da comportamenti conflittuali che l’insegnante può trovarsi a gestire in classe all’interno di normali dinamiche di gruppo che devono essere moderate e risolte impartendo, se necessario, punizioni. Analogamente, ai ragazzi che hanno utilizzato l’ambiente per scrivere commenti inappropriati è stato interdetto l’uso della chat.

Gli alunni intervistati come testimoni privilegiati della sperimentazione in fase di ricerca hanno dimostrato di averne, grazie anche all’episodio citato, una stabilità concettuale altissima di che cosa fosse una chat e delle norme che regolamentano il suo utilizzo. Argomentando con precisione in merito alle attività che si possono svolgere tramite questo strumento di lavoro e riflettendo sulle criticità naturali insite in un ambiente di comunicazione di questo tipo, hanno dimostrato di avere consapevolezza delle attività stimolanti che la chat offre agli utenti e del vantaggio che fornisce ai fini di una interazione istantanea. Di contro, hanno esposto consapevolmente i rischi ai quali si è soggetti quando si infrangono le regole del vivere civile, anche in un ambiente digitale. La consapevolezza interiorizzata da questi ragazzi dimostra l’acquisizione da parte del soggetto della capacità di relazionarsi in modo positivo con il mondo esterno alla scuola, oltre che esterno a se stesso. Sembra quasi paradossale dichiarare che le tecnologie for-

niscono un accesso privilegiato alla dimensione del dialogo e al confronto con l’alterità. In netta contrapposizione con le impostazioni intransigenti, che individuano nelle tecnologie uno strumento che favorisce la solitudine e induce all’isolamento da un contesto reale, affermiamo che gli ambienti semantici tecnologici alimentano fortemente un’apertura culturale e una predisposizione al dialogo tra le parti interagenti. Durante l’interazione mediata dalle tecnologie, il sé osserva se stesso mentre si rispecchia nell’altro ed è capace di trovare nuovi modi di essere e significati, nuove pratiche e modalità di interazione. L’inclusione di ambienti semantici tecnologici all’interno della classe alimenta la possibilità di formazione e di espansione del sé. Il paradigma metodologico cui facciamo riferimento riguarda l’ambito dell’identità dialogica, che concepisce l’identità come composta da vari posizionamenti di altrettanta varia natura. Il dialogo con gli altri entra a far parte sistematicamente del gioco identitario di ognuno di noi, e gli strumenti di comunicazione amplificano questa “polifonia”, moltiplicando i posizionamenti e arricchendo ciascun posizionamento di nuove voci. Le TIC contribuiscono così a creare contesti semantici nuovi, amplificando i posizionamenti a disposizione degli alunni. Gli scenari definiti diventano ambienti laboratoriali nei quali conoscere, accrescere e modificare il proprio sé. Come sostiene Bruner, costruire una storia attiva del proprio sé, che ingloba il passato organizzato in forma di documentazione, crea un *humus* fertile per stimolare funzioni cognitive sempre più sofisticate:

Il soggetto/discente è capace di avviare la costruzione di un sistema concettuale che organizza una sorta di documentazione degli incontri attivi con il mondo, una registrazione che è riferita al passato, la cosiddetta memoria autobiografica che viene anche estrapolata per applicarla al futuro – un sé con storia e possibilità.

Si tratta della capacità dell’uomo di usare la cultura per proiettare il passato nel futuro, al fine di creare un ambiente, un contesto, adatto a stimolare funzioni psicologiche e cognitive sempre più complesse. È la capacità di ciascuno di dare un senso alla propria storia personale, creando una rete interconnessa i cui fili sono il passato, il presente e il futuro, intrecciando la propria storia con il significato culturale dell’essere uomo. In altre parole, come sostiene Beatrice Ligorio, significa ammettere che le aspirazioni di ognuno di noi dipendono da un passato e un futuro collettivo, che quando i nostri insegnanti o genitori predicono i risultati delle loro azioni su ciascuno di noi tengono conto anche del loro passato e delle loro aspirazioni future.

Si tratta di accettare definitivamente che i media hanno un forte impatto

45. Ligorio, Hermans (a cura di), *Identità dialogiche nell’era digitale*, cit.
emotivo e, per questo, pragmatico-relazionale. Un sistema tecnologicamente mediato efficace consente di sfruttare tutte le possibilità della rete, permette di far entrare in contatto fatti, eventi e persone altrimenti non raggiungibili, e tale contatto avviene tra “un io e un loro” che dà la possibilità al soggetto di accedere a interpretazioni personalizzate, rielaborate da altri utenti e quindi alternative. I media, secondo lo scenario interpretativo delineato diventano una fucina germinante di artefatti culturali generati dal basso, dai soggetti, utenti/studenti che, potenzialmente, possono produrre nuovi oggetti di riferimento socioculturali e tecnologicamente mediati, in grado di interagire con l’interiorità di un soggetto. Per definire questo tipo di prospettiva facciamo ricorso al termine “emico”, proposto dal linguista Kenneth Lee Pike e preso in prestito dagli studi antropologici più recenti, che si contrappone alla visione “etica” dei fenomeni osservati: i due termini si riferiscono ai due punti di vista differenti con cui si interpretano i comportamenti culturali, a seconda che li si consideri dall’interno del contesto culturale stesso (quindi da parte del soggetto osservato) o dall’esterno (da parte degli studiosi che osservano e definiscono i fenomeni antropologici).

Riportiamo il commento di Ligorio, che, riallacciandosi alla visione di Pike e amplificandone la riflessione, sostiene che la visione emica è un’etica in divenire, che si concretizza attraverso riflessioni rilevanti per la cultura presa in analisi, in opposizione a una visione etica – classica – che predispone concetti e categorie a priori:

La visone “emica” si concretizza nell’uso di concetti e categorie rilevanti per la cultura in analisi, piuttosto che di concetti e categorie predisposti eticamente a priori e influenzati dalla cultura di chi osserva. La comunicazione mediata consente di far assumere ai vari comunicatori una prospettiva, per l’appunto, “emica” e quindi di contribuire non solo all’attribuzione di senso di quanto sta accadendo ma di esserne effettivamente parte, partecipando agli eventi attraverso una mediazione tecnologica.

L’educazione ai media diffusa nelle scuole può innescare un cambiamento di prospettiva che valorizza una visione emica dei fatti. I soggetti che in passato sono stati protagonisti passivi di contesti culturali particolari assumono oggi caratteristiche nuove che non si possono interpretare a seconda dell’appartenenza di un ruolo piuttosto che un altro riconosciuto e imposto da categorie codificate aprioristicamente. Stiamo ribaltando i termini di una questione complessa, riedificando il concetto di ruolo e attribuendo al “comunicatore” (come lo definisce Ligorio) capacità interagenti in grado di condizionare gli eventi ai quali partecipa, sfruttando la portata pervasiva della mediazione tecnologica.

46. Ibid.
2.3.9. Lo stato dell’arte: un setting altamente strutturato

Come abbiamo descritto attraverso le testimonianze di buone pratiche d’uso, sui banchi di oggi e di domani ci saranno, insieme al quaderno, alle matite colorate e ai libri, nuovi dispositivi tecnologici – devices complessi che arricchiscono con le loro molteplici potenzialità l’ambiente formativo. Se pensiamo allo spazio fisico tradizionale di una classe lo rappresentiamo attraverso l’immagine di un’aula composta da banchi ordinati, rivolti verso l’insegnante che sta in cattedra. Nell’immaginario comune il corredo di uno spazio scolastico prevede la lavagna di ardesia, i banchi, le sedie, i libri, gli astucci e i quaderni. Ma che cosa accade in classe dal momento in cui arrivano gli alunni alla fine delle ore scolastiche? Come si svolge l’attività didattica destinata alle nuove generazioni? La ricerca sul campo si avvale di strumenti di lavoro particolari, funzionali alla scoperta e all’avanzamento di nuove teorie inerenti al comportamento sociale, in contesti determinati dalla presenza di variabili fisse. L’osservazione partecipata è uno strumento di ricerca che ha alterato confini troppo spesso circoscritti e delimitati, tipici di uno spazio inaccessibile, permettendo di portare all’evidenza mondi nuovi che altrimenti sarebbero rimasti inesplorati. In questo caso la figura del ricercatore è di importanza fondamentale perché è colui che scruta dall’interno, registra e analizza le parti di un fenomeno, le scompone per assemblarle e generare contenuti che possono avere ricadute sull’innovazione e sul cambiamento di prospettiva, rendendo questi fenomeni visibili agli occhi di tutti.

Proviamo a ragionare attraverso la rappresentazione concettuale di mondi simbolicì contrapposti e dicotomicì: all’immagine statica di una classe con banchi disposti in fila di fronte all’insegnante, che dalla cattedra utilizza la voce come supporto strumentale per la trasmissione dei saperi, accostiamo un’altra immagine, metafora di uno scenario di apprendimento mutevole in grado di redarele le singole parti che costituiscono l’ambiente didattico per riformare le categorie tradizionali di spazio e tempo, e di conseguenza il concetto di attività che in esso si svolge. In questo modo scopriremo che le possibilità combinatorie sono tante, tutte significative e utili a conseguire risultati più gratificanti per la professione insegnante. Immaginiamo i banchi disposti come se fossero isole mobili pronte ad accogliere gli alunni, senza la staticità di un posto stabilito per tutto l’anno scolastico; oppure ancora disposti in cerchio, per consentire agli allievi di guardare i compagni negli occhi. Alla vecchia lavagna di ardesia si sostituisce la L1M, che consente di interagire tramite una superficie tattile o attraverso una penna ottica. Sui banchi compaiono dispositivi impensabili fino a qualche tempo fa: notebook, tablet, devices di ogni sorta, pronti ad animare la scena scolastica. La classe cambia fisionomia e si predispone per accogliere tecnologie altamente specializzate, dall’impatto ambientale forte.
Per queste ragioni ci sembra opportuno restituire una visione il più possibile esaustiva dello stato dell’arte e inserire nella rassegna ragionata di strumenti un’altra tipologia di setting tecnologico integrato, che può accadere di trovare allestito all’interno delle classi. Esso si può definire come un setting avanzato altamente sofisticato, forse il più innovativo e strutturato fino a ora. Osserviamo da vicino gli elementi costitutivi che lo caratterizzano:

- **LIM** (fissa in aula);
- **notebook** in classe per ogni studente;
- software installato nei dispositivi personali compatibile con quello della lavagna digitale;
- attivazione di legami logici tra la LIM e i dispositivi personali per avviare modalità di lavoro di gruppo: collaborativo, cooperativo, condiviso;
- tecnologie interattive altamente interconnesse grazie all’allestimento di una rete locale e una esterna;
- la connessione in rete di tutti i PC della classe consente di visualizzare l’attività svolte con la LIM sui devices dei singoli alunni e viceversa.

Il setting didattico descritto consente all’insegnante di interagire con l’alunno attraverso lo schermo condiviso della LIM in modalità one-to-one; è anche uno strumento di prova per stabilire se l’alunno è a sua volta connesso all’attività didattica svolta dal docente. Ogni attività che avviene sullo schermo della lavagna sarà visibile anche sullo schermo degli alunni, e viceversa. Si attiva così un processo di comunicazione immediato e reciproco tra il docente e l’allievo. Quindi, se è connesso, l’alunno può ricevere i file inviati dall’insegnante, e, a sua volta, il docente può analizzare e verificare in tempo reale lo svolgimento del compito dell’alunno (cfr. fig. 6). Monitorare la sequenza dell’esercitazione consente di individuare facilmente i momenti critici nella risoluzione dell’attività proposta e poi di condividerli con tutti gli allievi, che maturano così un grado notevole di attenzione e partecipazione durante tutto il processo in atto, valorizzato dalla presenza di un supporto interattivo così invasivo. L’attività didattica svolta è registrata in toto: il software installato alla lavagna di norma consente di salvare, e quindi conservare quanto viene prodotto dando vita a un repository consultabile all’infinito, prezioso perché sempre disponibile sia per gli alunni sia per i docenti. Il processo di comunicazione può diventare collettivo: grazie alla possibilità offerta dal setting di instaurare un dialogo a più voci, l’insegnante può condividere le attività con tutti i componenti della classe attraverso lo schermo digitale comune, che diventa il piano di lavoro condiviso. La prassi educativa amplifica le sue possibilità: all’esercizio che l’alunno può svolgere sul quaderno, in modo tradizionale, si affiancano pratiche molto complesse che sono realizzabili grazie alla presenza dei devices tecnologici. Si possono coinvolgere gli alunni in molteplici attività da progettare in classe, come ad esempio l’approfondimento di un con-
tenuto frutto durante la lezione, che può considerarsi il punto di partenza per la creazione di un oggetto interattivo e complesso, chiamato artefatto culturale. Il lavoro sinergico fra i compagni orientato all’elaborazione di un oggetto comune stimola i componenti del gruppo alla negoziazione sociale, finalizzata alla scelta delle risorse – rappresentate dalle potenzialità di Internet e dei libri di testo e del gruppo stesso – da investire per il raggiungimento dell’obiettivo.

Questa tipologia di attività consente agli alunni di sperimentare un nuovo ruolo autoriale e all’insegnante di monitorare l’evoluzione progressiva del processo attivato. L’attività didattica sarà osservata in fieri, durante la sua lavorazione, in virtù della possibilità offerta dalle funzionalità del setting di attivare legami logici tra le operazioni realizzate sui PC dagli studenti (che lavorano in gruppo) e la LIM gestita dal docente (cfr. fig. 7).

Il prodotto realizzato sarà il frutto tangibile di un lavoro finalizzato alla creazione di un artefatto digitale, un oggetto strutturato che darà forma e consistenza a concetti e pratiche acquisite dai ragazzi. Attraverso l’uso del setting gli alunni saranno in grado di svolgere le seguenti fasi operative:

- effettuare ricerche in rete;
- selezionare immagini;
- associare domande coerenti ai contenuti proposti nell’artefatto;
creare un piccolo contenuto (una sorta di micro unità didattica);
comporre un giochino/questionario per riflettere sul contenuto dato e sull’acquisizione delle informazioni.

Gli allievi investono il sapere acquisito durante la lezione per la creazione di una micro unità didattica e di un test di verifica atto a valutare l’acquisizione, o meno, dei contenuti trasmesi dall’oggetto creato. La figura del docente cambia in modo naturale e acquisisce una nuova autorevolezza, diventa un tutor, una presenza di riferimento che monitora la situazione, pronto a orientare il lavoro nei momenti di criticità. Attività così strutturate, caratterizzate dalla mediazione di un setting didattico integrato, stimolano gli alunni a considerarsi come una comunità di apprendimento, dove i soggetti si confrontano, scambiano idee e informazioni. Si attivano processi socializzanti tra il gruppo dei pari e si crea una rete di relazioni che si consolida e compatta verso un obiettivo comune. L’aula si trasforma in laboratorio: ognuno acquisisce un ruolo attivo e funzionale al con-
seguimento dell’obiettivo. Si innesca un meccanismo caratterizzato dalla produttività consapevole in grado di lasciare traccia di sé nei lavori/artefatti degli alunni, che nascono e si concretizzano in sinergia con il lavoro dei docenti.

2.4. Uno scenario in movimento

2.4.1. Il banco interattivo: opportunità e vantaggi di una desemantizzazione dello spazio scolastico

Nel raccontare ciò che accade all’interno delle nostre aule in termini di nuove esperienze basate sulla sperimentazione di pratiche didattiche innovative, siamo portati a osservare come la scuola digitale si apra al nuovo e riesca a riconfigurare i luoghi fisici del suo fare con l’intenzione esplicita di mutare un sistema immobile spesso arroccato su se stesso. Lo spazio sociale che si sfrutta in classe cambia e si trasforma: insieme al banco, i quaderni e i libri che caratterizzano lo scenario didattico, durante le lezioni ci sarà posto anche per altri strumenti, digitali e altamente interattivi, che sono in grado di innescare dinamiche sociali di apprendimento complesse. La rassegna ragionata di tecnologie per la didattica proposta nei paragrafi precedenti si arricchisce a questo punto della presentazione di un ulteriore strumento tecnologico definito banco interattivo, tavolo multimediale o banco digitale. È un dispositivo elettronico caratterizzato da una superficie interattiva posizionata in modo orizzontale all’altezza di un banco scolastico, progettato per il lavoro in piccoli gruppi (fig. 8).

L’organizzazione circolare del lavoro consente agli alunni di stare intorno al tavolo e di guardarsi negli occhi mentre esplorano le potenzialità d’interazione del gruppo. La partecipazione attiva degli alunni è stimolata dalla possibilità accattivante di manipolare oggetti digitali, flessibili e dinamici; gli allievi apprendono in un contesto dove la relazione e la collaborazione tra il gruppo dei pari rappresentano il valore aggiunto di una situazione fuori dagli schemi ordinari. Attraverso l’attivazione di dinamiche caratterizzate da una forte interazione, quali ad esempio la discussione e il dibattito, gli alunni sono incoraggiati a valutare ipotesi individuali (una diversa dall’altra) strettamente correlate all’argomento proposto dal banco; inoltre, la mediazione di un’interfaccia user friendly semplifica la manipolazione attraverso la superficie tattile del tavolo. La modalità didattica collaborativa generata dal banco richiede l’attivazione di una conversazione fra i partecipanti che, lavorando in gruppo attorno al tavolo, sono socialmente obbligati a negoziare una comprensione comune del compito e delle metodologie che sono adatte per risolverlo (fig. 9).

La riflessione è gestita dal gruppo dei pari che ragiona insieme sul perché sia giusto scegliere delle ipotesi risolutive piuttosto che altre, in attesa di trovare
un accordo collettivo. Il momento dialettico autogestito è finalizzato alla risoluzione dell’enigma posto dall’attività fruitta attraverso il tavolo. Non è il risultato finale a essere interessante agli occhi dei docenti e dei ricercatori specialisti del settore che lavorano in ambito educativo, ma il processo dinamico descritto, finalizzato alla ricerca della soluzione collettiva elaborata insieme e posta al vaglio di tutti per giungere alla scelta finale. Attraverso il procedimento dialettico messo in atto, gli alunni assumono un ruolo marcatamente contraddistinto dalla valorizzazione della loro presenza in classe percepita come necessaria e indispensabile per il raggiungimento dell’obiettivo comune. La possibilità di includere all’interno della classe un dispositivo simile rappresenta un elemento dirompente che scardina l’equilibrio formale tipico di aule tradizionali. Gli allievi che adoperano il tavolo si estraniano dal contesto classe diventando un gruppo che interagisce socialmente con il contesto d’aula che lo circonda. La sua presenza desemantizza l’ambiente didattico, riconducendo l’apprendimento a un’attività intenzionale e cooperativa, finalizzata allo svolgimento di compiti autenticì. Si viene a creare una comunità di pratiche, di gioco e di lavoro concreto, capace di manipolare gli oggetti presentati dall’attività del tavolo. Una piccola comunità in grado di osservare gli effetti dei propri interventi, che costruisce interpreta-

47 Le concettualizzazioni descritte sono il frutto di una ricerca sul campo (iniziata nell’anno scolastico 2010-11 e ancora in corso) condotta personalmente come ricercatore del gruppo di lavoro di esperti del progetto sperimentale ArdesiaTech, che ha monitorato l’impatto di un setting didattico tecnologico invasivo, altamente strutturato, (composto da netbook, IIM, banco interattivo e supportato da una rete locale e accesso Internet a banda larga), inserito nella didattica quotidiana in una scuola primaria di Montelupo Fiorentino. Per una trattazione diffusa dell’argomento cfr. G. Nulli (a cura di), Il tavolo interattivo: una nuova superficie per la didattica, in Faggioli, Fare didattica nella classe multimediale, cit.
zione dei fenomeni e dei risultati della propria manipolazione, condividendoli con gli altri compagni. Gli alunni apprendono attraverso la manipolazione attiva di oggetti, strumenti e contenuti digitali, insieme all’osservazione degli effetti immediati delle loro azioni. La pratica innescata dal lavoro di gruppo pro-posto dal tavolo si esaurisce a conclusione dell’attività riportando la situazione nuovamente al grado zero, come era al principio ancor prima di iniziare l’attività con il banco.

Il processo di apprendimento descritto può essere rappresentato attraverso il concetto simbolico di una rete altamente interconnessa, nella quale ogni alunno rappresenta il luogo in cui si posiziona al suo interno. Ogni punto d’incrocio della rete è generato dall’intervento alla discussione di un bambino che attira a sé altri partecipanti, fino a elaborare un reticolo costituito da una trama fitta di nodi e interconnessioni. Ogni nodo è uno stimolo proposto dalle riflessioni dell’alunno in grado di rilanciare la conversazione coinvolgendo i compagni, che agiranno allo stesso modo, generando un sistema virtuoso e un nuovo nodo della rete. Tale rappresentazione si oppone a una schematizzazione simbolica tradizionale che vede i componenti di una classe come elementi isolati di una rete caratterizzata dall’assenza di interconnessioni; è uno scenario di stampo tradizionale, nel quale l’apprendimento è considerato un processo trasmissivo funzionale all’acquisizione lineare di nozioni, secondo il modello di gutenber-
ghiana memoria di “uno a molti”, ovvero di una fonte emittente che raggiunge un vasto pubblico. La presenza del banco interattivo in classe riconfigura lo scenario dove si svolge l’azione didattica e stimola una resa cognitiva significativa in grado di potenziare gli apprendimenti, amplificando la componente esperienziale e dando luogo a conoscenze persistenti e trasferibili; di contro, però, impone problematiche di natura organizzativa riguardo l’ottimizzazione del tempo scuola trascorso in aula con gli allievi. I docenti che volessero intraprendere percorsi innovativi, che includono tecnologie simili al banco interattivo, devono considerare che il gruppo di lavoro che può sperimentare le attività del tavolo è bene che sia composto al massimo da 5/6 elementi; ma questo comporta la progettazione di un’attività didattica parallela, da destinare agli alunni che devono aspettare per utilizzare il banco. Una soluzione per risolvere questa problematica è disporre i componenti della classe in piccoli gruppi per farli lavorare in spazi interni all’aula in coordinazione: gli alunni distribuiti in gruppi differenti lavorano prima al banco, alla lavagna digitale e anche sui banchi tradizionali. In generale gli allievi sono pronti e desiderosi di cimentarsi nella pratica di nuove tecnologie a loro disposizione e potrebbero stupire i loro interlocutori mostrandosi disposti ad attendere, senza spazientirsi, il turno di accesso al device. Invece, potrebbe costituire un problema più serio la gestione dei tempi d’attesa di tipo tecnico sostenuti dal docente che si trova a dover familiarizzare con l’avvio del sistema di strumenti (e del software) non sempre efficienti, trattandosi talvolta di esemplari per la prima volta immessi in commercio. Del resto è nella natura stessa dei device tecnologici raggiungere stadi di maggior affidabilità e funzionalità con il progredire delle nuove release, superate le fasi prototipali.

2.4.2. La creazione di attività didattiche connesse all’uso del banco interattivo

Il tavolo multimediale è una superficie di lavoro condivisa dagli alunni che sperimentano in gruppo le attività interattive da esso proposte. Ha uno schermo touch screen tramite il quale possono interagire anche più utenti insieme, in coordinazione. La struttura interna del tavolo può essere composta da un computer, un proiettore che genera le immagini, e una superficie interattiva (come rappresentato in figura 10), sulla quale gli allievi potranno manipolare gli oggetti grazie a un’interfaccia grafica semplice e intuitiva.

Ci sono prototipi più costosi con caratteristiche differenti, ad esempio la presenza di un monitor LCD che funge da schermo interattivo (fig. 10).

Il tavolo multimediale è caratterizzato da un software authoring a disposizione del docente che può creare, modificare e arricchire le attività da presentare in classe agli alunni. Per ottenere ciò è necessario installare il software “autore” nel computer dell’insegnante, il quale può realizzare una serie di esercitazioni
2. BUONE PRATICHE A CONFRONTO

Fig. 10 – Schematizzazione dei componenti di due modelli di tavoli interattivi. Il secondo, in basso, composto da un computer e da un monitor LCD, è più avanzato e costoso.

Dinamiche basate sull’ordinamento, il confronto e la classificazione, tutte operazioni logiche fondamentali per l’apprendimento delle conoscenze di base che risultano più accattivanti, se svolte attraverso un’interfaccia grafica che rappresenti contenuti digitali e multimediali. Per trasferire il file creato con il software authoring dal computer personale al tavolo bisogna munirsi di una chiavetta USB che va inserita nella porta di accesso del banco. Il nuovo file acquisito dal dispositivo elettronico sarà a disposizione degli alunni, che potranno iniziare a interagire durante l’attività di gruppo. Alcuni tavoli consentono di selezionare l’impostazione di default che, all’accensione dello strumento, propone all’utente di lavorare all’ultima attività inserita, rimasta in memoria. Gli allievi manipolano oggetti inviando un input al device, e ricevono un segnale di output (di commento) in risposta alle azioni che promuovono per il conseguimento dell’obiettivo richiesto.
Il ruolo del docente cambia la sua fisionomia: non è previsto che intervenga in fierri, cioè durante l’interazione del gruppo con il device tecnologico; ma il suo contributo è indispensabile in fase di progettazione dell’attività. L’insegnante assume il ruolo del coordinatore sapiente che con cura allestisce la scena che si svolgerà all’interno della classe, tenendo conto di più variabili contemporaneamente: l’attività interattiva che il gruppo di pochi alunni gestisce con il tavolo; le attività parallele che sono destinate ad altri componenti della classe che interagiscono, disposti in gruppi differenti, con la lim e il pc in contemporanea. Il docente osserva le modalità di conduzione della discussione da parte degli allievi e interviene se quando il dibattito non è finalizzato alla collaborazione e alla risoluzione collettiva del problema proposto. Non è il risultato della manipolazione degli oggetti sul tavolo a rappresentare un valore eclatante, bensì il processo dinamico e sociale che si attiva grazie alla discussione collettiva su di un argomento di rilevanza. L’intervento del docente è indispensabile quando le attività con il tavolo sono giunte alla fine: sarà di sua competenza guidare gli allievi durante la formalizzazione verbale dei risultati e la strutturazione concettuale di quanto acquisito attraverso l’esperienza e il gioco. È fondamentale che il docente tenga presenti tutti questi aspetti connessi all’uso del device e soprattutto che interverga in modo costruttivo e partecipe nella cruciale fase di progettazione affinché le potenzialità dello strumento siano sfruttate appieno e il tavolo sia valorizzato nella sua proprietà di oggetto tecnologico all’avanguardia.
3. La valutazione della competenza digitale: presupposti e modelli di riferimento

Si impara meglio facendo.
Ma si impara ancora meglio
se si combina il fare
con il parlare di quello che si è fatto
e con il riflettere su quanto si è fatto
S. Papert

3.1. Premessa

Valutare la competenza digitale e, più in generale, le competenze, significa muoversi su un terreno per certi aspetti ancora inesplorato, che induce a misurarsi con realtà non sempre definite a priori. Ciò può comportare il fatto di dover abbandonare la comodità di norme e prescrizioni invalse da tempo, in favore di altre pratiche che pongono l’attenzione su prodotti didattici diversi, più complessi, che possiamo definire con il nome generico di artefatti, anche digitali se connessi all’inserimento delle tic in classe. Per gli insegnanti questa nuova realtà può rappresentare una sfida con se stessi e con la capacità di mettersi in discussione per promuovere una visione differente del loro ruolo in ambito formativo; una visione che nasce da un approccio rivoluzionario, destinato inizialmente ad affiancare i metodi di lavoro consueti fino a sostituirli forse, un giorno, del tutto. Questa prospettiva di cambiamento, anche se annunciato, spaventa coloro che sono costretti a viverlo non per scelta personale ma perché imposto dall’esterno e sollecitato da istanze nate “dal basso” che lottano prepotentemente per emergere e per vedere riconosciuta una loro ragion d’essere.

Come regolarsi di fronte a uno scenario nuovo che richiede di saper considerare e valutare materiali e documentazioni di cui prima non si era mai tenuto conto e che hanno una fisionomia simile ai prodotti artigianali in quanto testimoniano un saper fare pratico, concreto e dinamico? Come fare a definire, ma ancor più a tracciare, una mole di dati rilevanti prodotti dagli studenti, che esigono visibilità e riconoscibilità? Nei paragrafi successivi proveremo a rispondere a queste domande. Proporreremo soluzioni operative intese ad arricchire con altri strumenti utili il kit professionale dei docenti, affinché possano tener conto di un saper fare frutto del lavoro congiunto di allievo e docente secondo un meccanismo che si ali-
menta progressivamente. In una simile prospettiva, è la raccolta di tante performances nel loro andamento “in divenire” a risultare rilevante e ad essere adatta a confluire in uno strumento significativo, il portfolio, che permette la raccolta degli artefatti secondo un criterio non di selezione sistematica, ma di continuità; senza questo criterio, e se considerati isolatamente, essi infatti non sarebbero più rappresentativi di un iter formativo.

3.2. Un possibile metodo di valutazione: l’albero digitale

3.2.1. La natura tridimensionale della competenza digitale

Cerchiamo di riflettere sul concetto di “competenza digitale” ragionando sulla dimensione del come possiamo definirla e del che cosa gli alunni possono fare per essere consapevoli di possederla. Riportiamo per esteso la definizione di competenza digitale fornita dal Parlamento europeo circa le raccomandazioni sulle competenze chiave per l’apprendimento permanente:

La competenza digitale consiste nel saper utilizzare con dimestichezza e spirito critico le tecnologie della società dell’informazione (TSI) per il lavoro, il tempo libero e la comunicazione. Essa è supportata da abilità di base nelle TIC: l’uso del computer per reperire, valutare, conservare, produrre, presentare e scambiare informazioni nonché per comunicare e partecipare a reti collaborative tramite Internet. La competenza digitale presuppone una solida consapevolezza e conoscenza della natura, del ruolo e delle opportunità delle TSI nel quotidiano: nella vita privata e sociale come anche al lavoro. In ciò rientrano le principali applicazioni informatiche come trattamento di testi, fogli elettronici, banche dati, memorizzazione e gestione delle informazioni oltre a una consapevolezza delle opportunità e dei potenziali rischi di Internet e della comunicazione tramite i supporti elettronici (e-mail, strumenti della rete) per il lavoro, il tempo libero, la condivisione di informazioni e le reti collaborative, l’apprendimento e la ricerca. Le persone dovrebbero anche essere consapevoli di come le TSI possono coadiuvare la creatività e l’innovazione e rendersi conto delle problematiche legate alla validità e all’affidabilità delle informazioni disponibili e dei principi giuridici ed etici che si pongono nell’uso interattivo delle TSI. Le abilità necessarie comprendono: la capacità di cercare, raccogliere e trattare le informazioni e di usarle in modo critico e sistematico, accertandone la pertinenza e distinguendo il reale dal virtuale pur riconoscendone le correlazioni. Le persone dovrebbero anche essere capaci di usare strumenti per produrre, presentare e comprendere informazioni complesse ed essere in grado di accedere ai servizi basati su Internet, farvi ricerche e usarli. Le persone dovrebbero anche essere capaci di usare le TSI a sostegno del pensiero critico, della creatività e dell’innovazione. L’uso delle TSI comporta un’attitudine critica e riflessiva nei confronti delle informazioni disponibili e un uso responsabile dei mezzi di comunicazione interattivi. Anche un interesse a impegnarsi in comunità e reti a fini culturali, sociali e/o professionali serve a rafforzare tale competenza.

1. La raccomandazione costituisce uno dei risultati del lavoro congiunto della Commissione europea e degli
Le raccomandazioni sulle key competences per il programma di lifelong learning del Parlamento e del Consiglio europeo includono tra le competenze chiave, di cui tutti hanno bisogno per la realizzazione e lo sviluppo personale, la competenza digitale, la cittadinanza attiva, l’inclusione sociale e l’occupazione. In linea con lo spirito promulgato dalle raccomandazioni consideriamo la competenza digitale come qualcosa di più complesso oltre la semplice abilità di utilizzo di un software, riconoscendole una natura multidimensionale che implica l’intrecciarsi di componenti cognitive, metacognitive, critiche ed etiche, relazionali, sociali e partecipative. Secondo Antonio Calvani, ordinario di Didattica e tecnologia dell’istruzione all’Università di Firenze:

La competenza digitale consiste nel saper esplorare e affrontare in modo flessibile situazioni tecnologiche nuove, nel saper analizzare, selezionare e valutare criticamente dati e informazioni, nel sapersi avvalere del potenziale delle tecnologie per la rappresentazione e la soluzione dei problemi e per la costruzione condivisa e collaborativa della conoscenza, mantenendo la consapevolezza della responsabilità personale, del confine tra sé e gli altri e del rispetto dei diritti/doveri reciproci.

La definizione di Calvani enfatizza il valore della componente cognitiva senza la quale non può verificarsi un uso consapevole di strumenti digitali e del saper essere in rete. Il modo di interagire in rete con applicazioni e con persone è indicativo infatti delle caratteristiche salienti della nostra personalità digitale: essere cittadini della rete richiede competenze e conoscenze che non sono legate solo all’utilizzo di specifici strumenti o software particolari. Per sfruttare al meglio tutte le potenzialità di uno scenario così articolato è necessario fornire ai propri studenti elementi perché possano costruirsi una loro “cittadinanza” digitale, quindi insegnar loro ad accettare e rispettare l’individualità e la differenza per considerarle come fonte di ricchezza inesauribile; a esercitare il pensiero critico; a imparare che collaborare all’interno di un gruppo non vuol dire aspettare che siano gli altri a svolgere il lavoro per noi, ma essere in grado di raggiungere gli obiettivi in modo sinergico, considerando gli altri come parte indispensabile di un team che trae la sua forza dalla somma dei suoi componenti e delle sue risorse; che è opportuno evitare alcuni comportamenti per non subire sanzioni. Per interagire in rete e in ambienti digitali complessi sono capacità indispensabili il saper trattare le informazioni, selezionare e valutare quali di esse siano.

efficaci; e la capacità di interpretazione delle fonti, pratica necessaria per la costruzione di un saper fare dinamico che non può essere ridotto soltanto a una conoscenza libresca e alla trasmissione progressiva e lineare di nozioni. L’attenzione che in passato si concentrava sulla *querelle* relativa alla componente tecnica del mondo digitale gradualmente lascia il campo a considerazioni che chiamano in sé le componenti etica, cognitiva e tecnologica3. Le tre aree individuate non sono separabili perché costituiscono gli elementi salienti di una competenza che investe la sfera globale della vita dell’individuo. Sarebbe semplicistico e ingenuo pensare che tale competenza, in particolare la componente cognitiva ed etica, possa svilupparsi in modo naturale attraverso iniziative autonome lasciate alla spontaneità dei giovani. È per queste ragioni che le attività didattiche proposte agli alunni devono essere presentate in contesti sempre più realistici e pratici, in modo da connettere l’attività scolastica che si svolge in classe a una dimensione reale, trovando il naturale proseguimento anche in pratiche che regolano la vita quotidiana di un individuo. Il saper fare si espleta non più in ragione di aridi e astratti traguardi numerici da raggiungere in termini di valutazione, ma tenendo conto di un repertorio di prodotti o artefatti didattici già di per sé significativi degli interessi e delle propensioni del singolo verso le diverse aree del sapere.

3.2.2. Come costruire e rappresentare la competenza digitale in una prospettiva dinamica/operativa

La capacità di interagire in rete con ambienti digitali sofisticati, con applicazioni e altre persone, e le attività esperite on-line attraverso le molteplici potenzialità dei media digitali continuano, in modo naturale, a dare i loro frutti anche nella vita reale, come se la quotidianità prendesse forma anche e soprattutto dalle esperienze vissute in rete. Si è costituito un nuovo modello di socializzazione che invade con prepotenza la nostra realtà quotidiana, condizionando i nostri comportamenti, stili di pensiero e abitudini. Tali ingerenze sconfinano fino al punto di influenzare la dimensione più intima del nostro “io” e la costruzione della nostra personalità digitale.

Abbiamo scelto la metafora dell’albero come simbolo esplicativo per descrivere la complessità multidimensionale di una personalità digitale. La rappresentazione figurativa ci aiuta a definire come l’allievo percepisca se stesso, quali competenze è consapevole di possedere, e quali no. La composizione dell’albero digitale riflette

l’immagine di un “sé” particolare che stimola gli alunni a osservarsi mentre sono impegnati a fare qualcosa, includendo in questo “saper fare qualcosa” una spiccatamente componente performante. Nell’immaginario collettivo la metafora dell’albero evoca una valenza simbolica antropomorfa: la natura costituzionale dell’albero si presta infatti alla rappresentazione di una personalità; è inoltre in grado di dare forma visiva al percorso di crescita interiore di un alunno che, grazie a un sistema di analogie, possiamo descrivere in parallelo. La possibilità di promuovere attività didattiche che “allenano” ed “educano” alla capacità di riflettere su se stessi crea un terreno fertile sul quale gli insegnanti lavorano insieme agli alunni per costruire una competenza articolata che trova la sua specificità nell’essere in grado di autovalutarsi. Anche gli adulti, nonostante i trascorsi scolastici, si trovano in difficoltà di fronte alla richiesta di compiere pratiche autovalutative efficaci. Infatti, attivare processi di autovalutazione significativi non è un’operazione così banale come di solito si tende a pensare. Per sviluppare questa abilità dobbiamo essere capaci di individuare quali sono i nostri punti di forza e allo stesso tempo prendere coscienza di quali sono invece i punti di debolezza. Acquisendo consapevolezza di ciò che sappiamo fare, disponiamo di un’impalcatura pronta a sostenere quello che dobbiamo ancora imparare. Grazie all’esercizio pratico dell’autovalutazione si può iniziare un percorso per sviluppare, oppure raffinare, le competenze già possedute e modificarle ciò che invece si riconosce ancora perfettibile.

Creare un portfolio personale, nel quale inserire anche la rappresentazione grafica dell’albero delle performance, significa disporre di un materiale di archivio e di riferimento utile all’allievo e al docente che potranno consultare in qualsiasi momento. Gli alunni possono riflettere sulle informazioni che in esso sono contenute e utilizzarle come punto di partenza per ragionare su quali altre esperienze e attività è necessario investire energie per cambiare il proprio stato e migliorare sempre di più le proprie competenze. Tale pratica, per essere significativa, necessita della presenza di due interlocutori – il docente e lo studente – che, attraverso lo scambio e la relazione, intraprendono il percorso di valutazione. Mediante l’osservazione del materiale contenuto nel portfolio sarà possibile attivare un nuovo percorso destinato al raggiungimento di altri obiettivi formativi. Inserire il portfolio delle competenze all’interno di questo processo gli conferisce una valenza dinamica/operativa, utile alla professione del docente e alla crescita personale e didattica dell’allievo che continua ad apprendere.

Attraverso la rappresentazione grafica dell’albero l’allunno può osservare se stesso e l’evoluzione della propria personalità digitale. In altri termini, è un quadro rappresentativo delle competenze già possedute e di quelle cui aspirare: è grazie a esso che lo studente sarà in grado di situarsi all’interno del percorso di apprendimento al quale partecipare per sviluppare la propria competenza digitale e poi valutare se è stata acquisita con successo oppure no. Costruire il profilo
cognitivo personale nel modo descritto consente di intrecciare e creare delle connessioni indissolubili tra due dimensioni che trovano la loro massima espressione proprio nel percorso formativo dell’alunno, oltre che nella capacità che esso ha di coinvolgere e condizionare la costruzione dell’identità personale del soggetto. È infatti alla luce di queste considerazioni che le raccomandazioni sulle *key competences* per il *lifelong learning* si connettono allo sviluppo personale dell’individuo anche in termini di competenza digitale e formazione alla cittadinanza attiva.

3.2.3. Analisi dello strumento

Come abbiamo detto nel paragrafo precedente, l’albero è il simbolo antropomorfo che rappresenta l’alunno e la sua capacità intrinseca di apprendimento. Affinché il processo dinamico argomentato si compia, è necessario che le radici dell’albero affondino in un terreno fertile, alimentato da un *humus* speciale, simbolo di nutrimento per lo sviluppo della persona, della sua identità e delle competenze che sarà in grado di acquisire e mantenere nell’arco della vita. Sono le radici appunto che forniscono alla pianta-uomo le sostanze che gli consentono di sopravvivere, alimentando nel corso del tempo la sua crescita. Nella costituzione fisica del nostro albero il tronco coincide con la capacità di affrontare e risolvere i problemi con l’aiuto di risorse speciali. Un terreno arido, privo di sostanze e fonti di energia fa crescere stentatamente chi abita in quel luogo, condizionando negativamente il percorso di vita personale. Nella rappresentazione dell’albero il tronco assume il ruolo più importante perché sorregge tutto il processo che ci consente di riconoscere le nostre competenze. È grazie a questa impalcatura che i rami si ergono nel vuoto ben visibili per rappresentare il frutto dell’elaborazione personale (che una volta interiorizzata renderà consapevoli delle competenze che si possiedono). L’esercizio di pratiche autovalutative è indispensabile per individuare qual si voglia competenza personale, e per trovare ciò che a breve diventerà nuova acquisizione di competenza. Quest’ultimo momento si può rappresentare attraverso la comparsa delle foglie sui rami. Infine, l’apparizione simbolica dei fiori corrisponde alla presa di consapevolezza critica e all’assunzione di responsabilità su quali prassi saranno attivate per raggiungere le abilità che ancora non ci appartengono.

Come sostiene in modo pregnante Albert Bandura, psicologo canadese noto per la teoria sull’apprendimento sociale:

> Occorre un superamento di ostacoli grazie a un percorso perseverante di complessità gradualmente crescente, riconosciuto come tale dall’allievo. È attraverso questa via praticata tenacemente che si può arrivare al manifestarsi di motivazioni intrinseche che sopravvivono nel tempo.

In accordo con quanto affermato dallo studioso, sosteniamo che sia la motivazione a consentire di sfruttare appieno il set di abilità di cui si ha consapevolezza. Distinguendo che cosa so fare e che cosa no, individuo le abilità che possiedo e grazie a esse sono in grado di acquisirne altre per alimentare una competenza5 complessa. La padronanza di microabilità costituisce la patente per costruire e alimentare le competenze complesse. È questo l’approccio per fornire un modello cognitivo abilitante per la trasmissione di conoscenze e strategie acquisite attraverso livelli graduali. La funzione tutoriale offerta dallo strumento è una sorta di pratica guidata da un sostegno che viene progressivamente ridotto man mano che le abilità sono acquisite. È un meccanismo work in progress che sostiene il soggetto che apprende attraverso un’impalcatura (il tronco dell’albero) e lo pone in condizioni di accettare continue sfide personali per appropriarsi di nuove abilità che diventeranno competenze complesse consolidate, se sostenute da un autocoinvolgimento motivante.

3.2.4. L’albero, strumento di rappresentazione figurativa

Il meccanismo descritto con l’ausilio della metafora dell’albero è un circuito che si compone di momenti ben distinti, ovvero di fasi che sono gli elementi costitutivi del simbolo che evoca l’idea di fertilità per eccellenza. Ne percorriamo ora la struttura interna che lo costituisce, iniziando ancora una volta il percorso a partire dall’osservazione delle radici e considerando i cambiamenti che intervengono nell’iter di crescita intellettuale e conoscitiva dell’alunno. Il cambiamento registrato è esemplificativo delle situazioni seguenti:
- la registrazione di un mutare in positivo o in negativo;
- il bilancio di tutte le competenze acquisite e di quelle che ancora non lo sono;
- la valutazione delle strategie messe in campo per le competenze acquisite e quelle da mobilitare.

L’effetto di questa somma di cambiamenti al termine delle fasi rappresentate nello schema 1 (cfr. p. 90) si ripercuote su tutto il processo e mette in moto un percorso circolare, per cui la struttura dell’albero può essere ripercorsa in cicli completi successivi nei quali le radici costituiscono un nuovo punto di partenza, mutato e arricchito dall’esperienza precedente.

Osserviamo quindi il nostro albero dalle radici, ovvero dal punto in cui il percorso riflessivo dello studente ha inizio. Il tronco è l’elemento portante sul quale si regge la tassonomia che rende l’albero uno strumento operativo. Il modello è composto da cinque dimensioni che, esplorate a dovere, stimolano nell’a-

5. In generale consideriamo i termini “competenza” e “abilità” come interscambiabili tra di loro a esclusione però dei casi in cui ci riferiamo a competenze complesse, come ad esempio la competenza digitale, che sono invece costituite da microabilità il cui raggiungimento graduale è indispensabile per la loro acquisizione.
lunno la capacità di riflettere su che cosa sa fare e su come poter essere consapevole di ciò che sa fare. I cinque livelli elencati sono rappresentativi della competenza digitale. In questo scenario delineato, infatti, tale competenza assume un valore formale e riconoscibile in sintonia con le linee guida fornite dalle raccomandazioni europee che riconoscono in essa qualcosa di più complesso di un’abilità, o di una conoscenza e capacità particolare, per identificarla con la capacità di associare e integrare una molteplicità di risorse destinate ad affrontare in modo positivo problemi di rilevanza sociale e interiorizzare metodiche significative che influenzeranno la vita del soggetto nel corso dell’esistenza.

Le cinque dimensioni considerate rilevanti sono:
- osservazione attiva;
- dimostrazione;
- agentività consapevole;
- lavorare insieme;
- presenza digitale.

Schema 1 Rappresentazione dell’albero digitale

- **RADICI**
 - La mia identità all’inizio del processo

- **TRONCO**
 - Osservazione attiva
 - Dimostrazione
 - Agentività consapevole
 - Lavorare insieme
 - Presenza digitale

- **RAMI**
 - Riconoscimento di abilità che posso possedere

- **FOGLIE**
 - Riconoscimento di abilità che non posso possedere

- **FIORI**
 - I miei nuovi obiettivi: prassi da attivare per raggiungerli con successo
Nella vita di tutti i giorni l’incontro con nuove interfacce mette in discussione il nostro saper fare: l’osservazione attiva è l’atteggiamento favorevole a una natura esplorativa necessaria per imparare a usare la nuova interfaccia tecnologica con cui interagiamo. Ad esempio, durante il lavoro accade spesso di confrontarsi con situazioni che non si conoscono, pertanto esercitarsi in nuovi ambienti attraverso l’esplorazione per tentativi ed errori è utile per formulare ipotesi di lavoro e padroneggiare il software utilizzato in quel momento. Questo atteggiamento è un buon metodo per affrontare situazioni nuove che altrimenti possono provocare un sentimento di disagio iniziale nei confronti di una realtà che ci pone innanzi a una novità. Non è il risultato a essere importante ma la capacità di interiorizzare una prospettiva dinamica delle cose per affrontare il confronto con realtà spesso mutevoli, per essere pronti ad adattarsi a fare congetture e verificare ipotesi plausibili con il nuovo contesto che si vive.

La seconda fase è la dimostrazione. Durante questa tappa è possibile effettuare delle simulazioni sperimentali elaborando dati e formulando ipotesi e relazioni pertinenti, grazie alla padronanza del mezzo già consolidata durante la fase precedente. Si elabora un format logicamente plausibile e si verifica la congruenza di alcune ipotesi in relazione al modello: a seconda di alcune variabili insite al sistema si osserva che cosa accadrà associandone altre, in un periodo di tempo prestabilito. Ad esempio, determinato un problema, congruente al modello di riferimento, lo svolgimento avanza in funzione di domande a esso coerenti del tipo: “Che cosa accade se alla presenza degli elementi costitutivi del sistema si verifica questa eventualità?”.

La terza fase della tassonomia, l’agentività consapevole, chiama in causa uno sforzo cognitivo maggiore rispetto alle fasi precedenti perché richiede la capacità di organizzare il lavoro in modo critico. È necessario per questa dimensione focalizzare la riflessione su un tema particolare raccogliendo le informazioni per selezionare quelle pertinenti, affidabili e congruenti, da quelle che invece non lo sono, affinché costituiscano una risorsa valida per lo studio, il lavoro e la cittadinanza attiva di ognuno di noi.

La quarta dimensione, lavorare insieme, riflette la possibilità di dedicarsi alle pratiche collaborative enfatizzate dalla mediazione di potenzialità inesplorete fino a ora, offerte dalla presenza dei media digitali. La possibilità di coniugare sinergicamente le azioni comuni si traduce nella creazione di un artefatto narrativo che è un prodotto digitale compiuto e il frutto dei contributi collettivi.

L’ultima fase, la presenza digitale, è strettamente connessa alla spiccata componente sociale degli ambienti digitali all’interno dei quali è necessario discer-
nere i comportamenti che sono considerati idonei da quelli che invece non lo sono, come del resto accade in una comunità civile. Tale dimensione riflette l’occasione di prendere parte in modo fattivo ad ambienti comunitari on-line e ai network di relazioni che in esso si costituiscono. Il web 2.0 e la diffusione massiccia dei nuovi media offrono la possibilità di partecipare a molteplici contesti digitali, stimolando un forte senso civico necessario per essere padroni di pratiche sociali e comunicative idonee e consapevoli; esso rappresenta un prerequisito dal quale non si può prescindere per avere uno spazio vitale nella società dell’informazione e della conoscenza. Gli alunni saranno consapevoli delle pratiche che gli appartengono grazie all’analisi delle esercitazioni dinamiche, strutturate e proposte dal docente in base alle dimensioni che compongono la tassonomia; tale momento è rappresentato simbolicamente dalla presenza dei rami. Essi sono strettamente connessi all’esplicitarsi della tassonomia, infatti l’alunno sarà consapevole delle dimensioni dinamiche di cui è competente dopo il confronto fattivo con le dimensioni che la caratterizzano.

La fase successiva associata alla presenza simbolica delle foglie è dedicata all’autoanalisi, indispensabile per capire quali sono le tappe della tassonomia ancora perfettibili; infine, i fiori rappresentano le pratiche da attivare affinché il percorso proposto dalla tassonomia sia completato con successo. In conclusione la composizione del nostro albero potrà dirsi compiuta quando sul tronco appariranno rami, foglie e fiori.

Il modello di riferimento descritto consente all’insegnante di adattare la tassonomia alle esigenze particolari del lavoro che vuole affrontare con la classe. La possibilità di plasmare lo strumento alle esigenze del momento, spesso dettate da condizioni materiali particolari (dotazione di un setting didattico digitale differente per ogni singola realtà scolastica, infrastrutture legate alla configurazione del luogo geografico nel quale si trova l’istituto e quindi facile accesso alla rete oppure no, cablatura presente in tutte le aule o meno) rappresenta un valore aggiunto a disposizione del docente che ha un format di lavoro adattabile a seconda della classe nella quale sta lavorando e delle caratteristiche strutturali dell’istituto. Fornire uno strumento rigido e altamente strutturato risulterebbe riduttivo e penalizzante per la professione del docente che si limiterebbe a essere un esecutore passivo, interpellato per la somministrazione di strumenti massicciamente standardizzati. Attività inutile, del resto, perché entrerebbe in conflitto con la configurazione variabile degli ambienti di apprendimento condizionati da vincoli anche strutturali e bisognosi piuttosto di strumenti creati ad hoc calibrati sulle specifiche esigenze di ciascuno.

6. Esiste infatti un vero e proprio galateo della rete chiamato netiquette, nato dalla fusione delle parole net ed étiquette.
3.3. Il portfolio come strumento di lavoro *work in progress*

3.3.1. Come orientare alla consapevolezza

L'apprendimento è un'acquisizione attiva, che avviene attraverso la strutturazione e la trasformazione dell'esperienza non solo cognitiva, ma anche sociale ed emotiva. L'acquisizione di queste competenze, cui ne affiancheremo altre legate più specificamente allo studio, è necessaria per prevenire comportamenti a rischio e per promuovere non solo il benessere personale e sociale, ma anche per muoversi in una realtà sempre più mobile e fluida e per fronteggiare le paure e le incertezze che ne derivano*.

Il portfolio è stato concepito come strumento di lavoro nell’ambito dell’arte visiva. Esso può essere immaginato come una sorta di cartella, di “porta-foglio” che contiene alcune opere di un pittore, di un grafico o di un fotografo. Le opere incluse sono una selezione delle più importanti che rappresentano l’itinerario professionale dell’artista per promuovere e presentare la sua attività al momento giusto. Un’opera è il frutto di una produzione che si articola nel tempo, fatta di intuizioni, sviluppi, bozzetti, versioni meno riuscite e versioni definitive che conducono al risultato finale. L’esito deriva da un metodo di lavoro orientato alla creazione di un prodotto, in questo caso particolare di un’opera dell’ingegno.

Il metodo di lavoro descritto è utilizzato per la prima volta nel campo artistico, ma è presto esteso ad altri settori di riferimento. Interpretare il portfolio come la raccolta di performance, ovvero la dimostrazione di processi e di progressi, ha permesso l’utilizzo di un nuovo strumento di lavoro a coloro che operano in ambito educativo. La necessità di raccogliere prove, progetti, minute, momenti positivi di avanzamento di un lavoro e tutte le criticità insite nell’evoluzione di un progetto, fanno del portfolio uno strumento operativo che, se ben utilizzato, supporta e guida il processo di apprendimento e l’*iter* complesso che lo accompagna. Se il portfolio è definito come la documentazione ragionata delle proprie performance, è necessario riflettere sul concetto di “performance”, sul lavoro didattico orientato alla conquista di una competenza, e su come sia possibile registrare un esito pratico positivo di un lavoro, o di un artefatto didattico. Che cosa supporta la performance? Che cosa sorregge il processo di apprendimento? E come il portfolio può essere veramente un valido aiuto al compito che il docente è chiamato a svolgere con gli alunni? Il portfolio delle competenze, introdotto nel contesto delle politiche educative dalla legge 28 marzo 2003, n. 53, moltiplica i dubbi e le domande che abbiamo formulato in questo lavoro di approfondimento sul tema. Le *Indicazioni nazionali per i piani di studio personalizzati*.

zati nella scuola primaria offrono una chiave di lettura esplicativa interessante al riguardo. Esse evidenziano infatti il compito principale e di servizio che è chiamato a compiere nei confronti degli alunni, uno strumento che consiste «nel fargli scoprire e apprezzare sempre meglio le capacità potenziali personali».

Il concetto di portfolio così definito trae spunto e contribuisce in modo significativo alla visione promulgata dalla cosiddetta “riforma Morin”.

Ricordiamo infatti che la riflessione epistemologica e culturale del teorico è orientata su due fronti particolari: la riforma dell’insegnamento e la riforma del pensiero. Se il percorso formativo fosse ripensato seguendo un’impostazione didattica più costruttiva e interattiva, la funzione trasmissiva e riproduttiva del sapere affidata alla scuola sarebbe messa in discussione a favore di un’impostazione orientata alla costruzione attiva del sapere. Ponendo la querelle in questi termini il centro della riflessione si sposta dal prodotto finito al processo attivato per realizzarlo, un processo che è in grado di ridefinire i termini di una visione di sistema diventata obsoleta.

3.3.2. Process-folio strumento significativo

Per delineare il profilo di uno studente, il portfolio rappresenta un valido aiuto, infatti la sua costruzione in itinere consente all’alunno di documentare, analizzare, autovalutare e osservare i progressi effettuati durante un arco temporale stabilito. Questa visione sposa il concetto di un cammino sempre mutevole e mai fisso, pronto a cambiare direzione in fieri per raggiungere risultati sempre migliori. In questo modo si dà vita al fenomeno che viene definito dalla letteratura di riferimento come «biografia di un lavoro, di un apprendimento, e di una competenza». Alla base di questa prospettiva c’è l’idea di registrare un percorso per documentare attraverso il dato sensibile lo svolgimento di un iter scolastico. Una raccolta intesa come work in progress, che evidenzia i momenti critici e significativi che sono presenti durante la realizzazione di un lavoro o di un progetto.

La raccolta dei documenti avviene assecondando l’idea di continuità e non il criterio di selezione, in linea con la consapevolezza che si sta osservando lo sviluppo di un processo senza il quale il momento significativo – cioè la performance – non sarebbe possibile. Come sostiene Howard Gardner, studioso di

8. Il portfolio delle competenze individuali, in Indicazioni nazionali per i Piani di studio personalizzati nella scuola primaria.
11. La parola “performance” va intesa come “qualcosa che si mostra”, un’evidenza che è caratterizzata da un risultato e non in termini penalizzanti per l’allievo.
fama internazionale, il dossier potrebbe essere chiamato con il nome di process-folio\(^\text{12}\) mettendo in evidenza proprio il concetto di continuità ed escludendo la selezione sistematica dalla pratica di raccolta dei lavori. All’interno della raccolta devono essere inseriti passaggi che sono considerati cruciali per testimoniare la crescita e il progresso che hanno condotto a quei particolari risultati, includendo certamente anche le criticità; ecco perché il termine process-folio indicato da Gardner sintetizza e rispecchia la sua natura work in progress.

Gli attori che interpretano ruoli protagonisti durante le scene che si svolgono in ambito scolastico, avvalendosi di uno strumento così delineato, godono dei benefici di una prassi articolata, che facilita lo svolgimento di due momenti cruciali: restituiscono informazioni preziose su come procede il progetto di insegnamento e il processo di apprendimento. È una visione di sistema che orienta la pratica didattica del docente insieme ai processi di apprendimento degli allievi. La scelta di coinvolgere lo studente nella selezione mai casuale dei materiali da inserire nella documentazione personale è coerente con la volontà di aiutare l’alunno a sviluppare la capacità di riflettere su se stesso, orientando il pensiero all’autovalutazione. Lo studente che manifesta un atteggiamento autocritico e riflessivo è in grado di porre l’attenzione sul proprio apprendimento e di osservare le relative zone d’ombra. La presenza del docente/tutor lo aiuta a superare una fase autoreferenziale nella quale, grazie alla capacità di autovalutarsi, individua delle problematicità cui ancora non sa porre rimedio con strategie già note. Chiedere aiuto e sostegno al docente/tutor significa attribuirgli l’onore e l’onere di una figura autorevole che lo guida nella ricerca di strategie opportune, di strade da percorrere per ottenere risultati migliori. Stiamo creando una situazione fertile dove il dialogo, lo scambio e la condivisione tra gli attori dell’ambiente scuola diventano i veri protagonisti della scena. Incidere sull’autostima, sulle capacità attributive e motivazionali dell’alunno significa aiutare lo studente a riflettere sul proprio apprendimento per gestire e giudicare i progressi personali.

Un ambiente sano dove misurarsi con le proprie abilità acquisite o con quelle da acquisire, senza che la condizione iniziale sia considerata come difettiva, ma soltanto il punto di partenza dal quale iniziare un processo, ovvero un iter reso noto dalla raccolta di documenti che costituiscono il nostro process-folio. Il portfolio, o ancora meglio il process-folio, così organizzato è un documento significativo, in grado di rappresentare un valido aiuto per la realizzazione del profilo, sempre dinamico e mutevole, di uno studente.

3.3.3. Il portfolio come pratica di assessment

Il portfolio utilizzato come strumento di assessment ha l’obiettivo di stimolare in colui che apprende dimensioni sociocognitive e metacognitive, per sviluppare nell’individuo saperi e abilità strategiche di autovalutazione, autogestione e automonitoraggio del processo di apprendimento.

Come sostiene Bianca Maria Varisco, docente di teorie e tecniche della valutazione presso l’Università di Padova e autrice di diversi lavori sulle pratiche di assessment, la dimensione valutativa non può essere ritenuta successiva ai processi di apprendimento-insegnamento, ma va considerata come pervasiva e complementare, continua e intrinseca ai processi stessi.

Una nuova prospettiva sulla valutazione, che prende le distanze da una visione tradizionale, è argomentata da autori del calibro di Sarah Gielen, Sabine Diereck, e Filip Dochy, i quali sostengono che

l’assessment non finisce dopo il temporaneo feedback […] (e che) una categorizzazione degli effetti al limite temporale (time-bound) diventa un elemento sfumato (fuzzy) quando l’assessment viene realmente integrato nel processo di apprendimento-insegnamento13.

Studenti e insegnanti hanno la possibilità di vedere e rivedere la performance, e la revisione in itinere, ancorata a compiti pratici e autentici, non deve assumere il significato di un giudizio colpevolizzante, ma di un’opportunità. Comprendere che la pratica di revisione è parte integrante dell’attività didattica e del processo di apprendimento spingerà docenti e alunni a utilizzarla per ottenere i massimi risultati. Il feedback rilasciato sulla performance rappresenta una spia luminosa che guida i processi di insegnamento-apprendimento, dimostrando che il “saper fare” ora, in questo momento, è passibile di miglioramento per raggiungere risultati più gratificanti nella performance successiva. Un sistema di assessment innovativo è caratterizzato da quattro elementi principali:

1) una completa demistificazione di standard (normativi vs criteriali) e compiti tradizionali (artificiosi vs autentici);
2) molteplici opportunità di accompagnamento di feedback per apprendere e padroneggiare compiti complessi;
3) progressivi report in cui le performance correnti vengono continuamente valutate;
4) conoscenza di “come sta facendo ciò che deve fare”14.

Gli studi più recenti sulla valutazione di apprendimenti e competenze condividono una visione di *assessment* centrato su chi apprende, rivolto al perseguimento di abilità di autovalutazione e autoriflessione sviluppate dagli studenti. Un sistema di *assessment* multidimensionale è in grado di integrare strumenti di valutazione innovativi a strumenti tradizionali. Viene a costituirsi una nuova visione della valutazione che prende le distanze dalla tradizione pura, sostenendo che la valutazione per essere efficace deve fare parte del processo di apprendimento, non essendo possibile considerarla come una tappa isolata a sé stante. Come affermano diversi autori del calibro di Bell e Burkhardt, curricolo e valutazione sono strettamente connessi. Le ricerche condotte sul campo dai due studiosi hanno contribuito a sviluppare una nuova concezione definita come “valutazione bilanciata”, che si fonda su due principi teorici di riferimento: il “curricolo bilanciato” e la “validità curricolare”. Per il curriculum bilanciato ciascun pacchetto di *assessment* consiste di un set di compiti di peso e stile diversi che, presi insieme, riflettono gli obiettivi curricolari in modo bilanciato. Per la validità curricolare i compiti stessi rappresentano autentiche attività di apprendimento di alto valore educativo; in questo modo il tempo impiegato per il loro svolgimento è un beneficio reale e non una perdita per gli apprendimenti degli studenti.

Forme di *assessment* di performance autentiche sono caratterizzate da un dinamismo intrinseco e possono considerarsi una valida alternativa al compito tradizionale. Sono in grado di rendere abile lo studente a mostrare che cosa conosce, rendendo espliciti e visibili tutti gli obiettivi che ha raggiunto e palesando quelli che ancora deve conquistare. Il feedback a disposizione degli alunni presenta una parte integrante del processo di apprendimento, e costituisce l’attività principale che consente all’alunno di avere chiaro che cosa deve fare per raggiungere l’obiettivo di riferimento.

Il *performance assessment* è praticabile in particolare in attività di sperimentazione e ricerca, favorisce un apprendimento significativo e sviluppa interesse nei confronti dei pari. Ad altre forme tradizionali di una valutazione principalmente eterogestita si accostano modalità valutative che integrano l’analisi, la valutazione e il monitoraggio delle pratiche di insegnamento-apprendimento, per avere una comprensione profonda delle ragioni e dei processi in atto che generano le prestazioni di studenti distribuite nel tempo. L’attenzione si concentra su colui che apprende con l’obiettivo di facilitare un apprendimento sociocognitivo e metacognitivo, in grado di potenziare conoscenze e abilità strategiche di autovalutazione, automonitoraggio e autogestione dei processi di apprendimento. I ricercatori nordamericani, statunitensi, canadesi, australiani ed europei propongono un sistema di *assessment* misto, integrato e pluralistico, che mette in discussione pratiche valutative di apprendimenti e competenze consolidate nel
tempo ma non per questa ragione efficaci. Un sistema di *assessment* veramente significativo fa riferimento a compiti non artificiosi e formali ma reali, riscontrabili in contesti specifici e situazioni realistiche.

Legare la pratica valutativa a compiti e contesti realistici motiva chi apprende, che percepisce tali momenti come ulteriori tasselli del processo di apprendimento legati agli obiettivi educativi prefissati, non considerati più come una forma di *assessment* punitrice e slegata dall’intero processo educativo. La visione di *assessment* descritta è strettamente legata al concetto di sviluppo prossimale di Lev Vygotskij\(^\text{15}\). L’enfasi posta sul concetto di cambiamento potenziale dell’individuo si basa sulla concezione di una valutazione dinamica, che si oppone a una misurazione di tipo statico. Una valutazione di tipo dinamico non sottostima l’abilità di apprendimento di studenti che in un dominio particolare hanno dimostrato di comportarsi in modo inadeguato, ma considera la performance come parte integrante del processo intrapreso attraverso la quale inescare momenti di apprendimento reale che permetteranno all’alunno di raggiungere gli obiettivi. Pensare a un sistema dinamico significa integrare l’*assessment* nel processo di insegnamento/apprendimento, facendo della pratica valutativa ancora un tassello indispensabile.

Il portfolio è uno strumento di *assessment* rilevante se considerato in una prospettiva dinamica. Bisogna interpretarlo come una raccolta sistematica condotta lungo un arco temporale preciso, utilizzando criteri di scelta stabiliti e condivisi, finalizzata alla facilitazione dei processi di insegnamento/apprendimento. Come sostiene ancora Varisco, non si può restringere la valutazione al giudizio di un prodotto finito emesso alla richiesta di uno specifico compito assegnato. La valutazione, per essere veramente significativa, deve osservare, monitorare e registrare un processo *in fieri*, che non può essere considerato come separato dall’apprendimento.

L’insegnante non deve limitarsi a valutare i soli “prodotti” dello sviluppo prossimale o attuale dei suoi allievi di fronte allo specifico compito assegnato, ma creare le condizioni per rendere trasparente le loro condizioni di sviluppo prossimo, favorendo l’esplicitazione di un processo sociale, sempre presente, ma troppo spesso sommerso, che, attraverso l’interazione dialogica (*peer tutoring* e *peer scaffolding*) e l’apprendimento tra pari, porta all’eventuale sua attualizzazione\(^\text{16}\).

Appendice

1. **Focus group con i protagonisti della sperimentazione**
 "Un computer per ogni studente"

Per indagare il rapporto degli alunni post sperimentazione con le tecnologie digitali, e in particolare la capacità di relazionarsi criticamente con i media sia in classe sia nella vita di tutti i giorni, è stato condotto uno studio sul campo mediante l’impiego di tecniche d’indagine tipiche della ricerca quantitativa e qualitativa. Si è optato per la somministrazione di un questionario semistrutturato con domande a risposta multipla e a risposta aperta per capire quantitativamente che tipo di preferenza manifestassero nell’uso delle tecnologie, e per comprendere se associassero l’utilizzo di *devices* digitali oltre che a un appagamento ludico anche a scopi didattici. Assecondando la fortunata possibilità di interpellare direttamente i fruitori della sperimentazione, in fase di ricerca per la raccolta dei dati, è stato utilizzato anche lo strumento d’indagine qualitativa della *focus group discussion* (cfr. box).

I risultati di questo lavoro hanno condotto a conclusioni di carattere descrittivo in ordine ai microcontesti scolastici studiati. È stato possibile effettuare un colloquio anche con un piccolo gruppo di controllo che ha manifestato comporta-

Focus group

Il *focus group* è uno strumento di rilevazione in uso nel campo della ricerca sociale per innescare e gestire la relazione tra gruppi di persone coinvolti in una discussione. È utilizzato molto spesso per lavorare con un gruppo che si confronta su un argomento determinato o una situazione particolare. Esige la presenza di più persone di riferimento che costituiscono il gruppo partecipante al *focus*, di uno o più ricercatori/moderatori che hanno la funzione di condurre il dialogo tra i presenti. I ricercatori orchestrano la scenografia canalizzando l’attenzione del gruppo su questioni e punti di vista precisi. Il *focus* è guidato dalla scansione temporale del moderatore che ha a disposizione un protocollo prestabilito, una sorta di sceneggiatura dell’evento.

menti meno “socializzanti” e aperti al dialogo rispetto agli alunni protagonisti della sperimentazione. Gli scolari del gruppo di controllo hanno infatti cominciato a raccontare la loro esperienza di alunni di una classe tradizionale soltanto dopo numerose sollecitazioni e inviti alla partecipazione verbale. La modalità di coinvolgimento da parte dell’utente è stata caratterizzata dall’assimilazione o dal contrasto rispetto a quanto offerto dai contenuti digitali più vari proposti durante la rassegna. Gli alunni intervistati manifestano un forte coinvolgimento personale riguardo alle categorie proposte dai contenuti mediali. Infatti gli allievi maggiormente coinvolti sono in grado di riconoscere e distinguere categorie diverse tra loro, percepiscono più elementi differenti e più somiglianze tra i vari media sia riguardo al contenuto che viene fruito sia per quanto riguarda l’utilizzo tecnico del medium tout court\(^2\). Sono emerse due categorie fondamentali secondo cui i partecipanti distinguevano i media attribuendogli le seguenti due caratteristiche principali: da una parte quelli che potevano rappresentare una risorsa didattica; dall’altra quelli che erano associati a momenti esclusivi di divertimento ludico. Gli intervistati inglobavano Internet nella prima categoria, ritenendo fermamente che essa potesse essere una risorsa molto utile per affrontare i compiti a casa. Infatti il campione di riferimento ha dichiarato in toto tale propensione nei confronti della rete, considerata appunto come una risorsa valida, a cui fare riferimento per lo studio individuale e per lo svolgimento di lavori collettivi. Riportiamo di seguito la risposta fornita da una bambina componente del gruppo, alla domanda presentata attraverso un documento PowerPoint di supporto – strumento di osservazione calibrato ad hoc, congeniale per indagare i processi oggetto di studio dell’indagine – “che cosa faresti se andassi nel passato dove la tecnologia non era ancora presente nella vita di tutti i giorni?”:

Per me, se non ci fosse la tecnologia, sarebbe un problema, se mi teletrasportassi nel tempo sicuramente insegnerei e spiegherei che cos’è la tecnologia al giorno d’oggi… Tutti ne rimarrebbero affascinati… Io non starei due secondi senza il computer, ma sicuramente me la caverei… Diciamo che noi nel XXI secolo siamo nati con una marcia in più, ovvero abbiamo la tecnologia e non come molti anni fa che non si sapeva distinguere l’uno dal due e non avevano Internet per le ricerche. Mettiamo che mi teletrasportassi nel tempo e mi teletrasportassi nella preistoria, non vivrei senza tecnologia. Però imparerrei molte cose e rimarrei lì fino a quando anche loro non imparassero tante cose scoprendo la tecnologia.

Per quanto riguarda la seconda categoria, ritenevano i videogiochi e tutte le strutture hardware preposte al loro funzionamento come ambienti prevalentemente finalizzati al divertimento. Durante il focus group, nonostante le ripetute

sollecitazioni fornite, i ragazzi non hanno mai manifestato l’idea di una possibile fusione tra le due categorie delineate, infatti insistevano nel ribadire una netta separazione tra ambienti finalizzati allo studio e ambienti mediali finalizzati all’*edutainment*.

Comunque l’entusiasmo e l’altissimo grado di partecipazione rilevato durante i *focus* segnalano un forte coinvolgimento personale degli alunni alla sperimentazione; questo coinvolgimento, associato alla capacità di distinguere categorie differenti di media digitali, testimonia come il processo di costruzione dell’identità dei protagonisti sia stato influenzato in positivo dalla presenza delle TIC in classe e dalle attività esperite durante il progetto. Gli studenti hanno acquisito competenze complesse nell’utilizzo degli strumenti digitali (capacità di gestione di ambienti on-line, utilizzo metodico di strumenti di comunicazione in modalità sincrona e asincrona, gestione di software *authoring* ecc.) distinguendo le funzioni caratterizzanti i singoli media per selezionarli in modo appropriato a seconda dello scopo. Dimostrano anche di padroneggiare un lessico pertinente ai media che citano, dichiarando apertamente che le attività scoperte durante la sperimentazione hanno continuato a dare i loro frutti anche in ambiti di attività non strettamente connessi al digitale, senza fratture o stacchi traumatici da quanto avvenuto in classe.

Sono state realizzate tre *focus group discussions* con tre gruppi diversi. Complessivamente hanno partecipato ai tre gruppi di discussione 50 bambini, di età compresa tra gli 11 e i 12 anni per i primi due gruppi, e di 6 per quanto riguarda il terzo. È stato possibile osservare modalità d’interazione differenti all’interno del singolo gruppo, legate a motivazioni particolari e a peculiarità collegate a uno specifico contesto sociogeografico. Si è osservata un’eterogeneità intergruppo: infatti il primo gruppo è risultato composto da studenti residenti in un centro cittadino a ridosso di Torino, mentre il secondo da studenti residenti in una zona più periferica. Per contro, si è avuta un’omogeneità infragruppo che ha consentito ai soggetti un’interazione conversazionale priva di inibizioni. Ogni discussione di gruppo è stata avviata dalla presentazione dei componenti che stavano partecipando al *focus*. Prendendo spunto da domande semplici del tipo “che cosa ti ha lasciato un’esperienza così importante vissuta in classe?”, è stata sviluppata una discussione informale a più voci, diretta da un animatore e basata poi su una scaletta di domande aperte. Ogni discussione e i singoli interventi dei bambini sono stati registrati e filmati per essere trascritti e successivamente analizzati nei dettagli, per avere un quadro esaustivo dei dati raccolti. L’utilizzo della *focus group discussion* ha consentito di cogliere il processo di attribuzione di senso alle tecnologie digitali e multimediali. Il gruppo di alunni di Rivoli ha discusso per

60 minuti, il secondo e il terzo di Novi Ligure rispettivamente per 40 e 90 minuti; le discussioni hanno avuto luogo nelle rispettive sedi scolastiche. Come già detto, ogni discussione è stata interamente registrata e affiancata da “note sul campo” scritte a posteriori dal ricercatore, utili a identificare le dinamiche di gruppo e a osservare le strategie di interazione fra i compagni, o i processi di risoluzione dei conflitti. La discussione è stata avviata attraverso un argomento precipuo, sviluppato dallo stimolo visivo fornito dalla proiezione di una presentazione PowerPoint. Le slide sottoposte all’attenzione degli alunni partecipanti al gruppo di discussione presentavano uno scenario ben definito e richiedevano di assolvere a un compito fondamentale: completare la storia fornita attraverso le immagini, individualmente, e facendo ricorso alla propria fantasia. L’uso di questa traccia è stata molto flessibile, in tal modo si è assecondato il flusso della conversazione che alimentava e stimolava il raggiungimento dell’obbiettivo e delle consegne stabilite dalle slide. Durante le interviste si rinunciava ad alcune domande o se ne introducevano di nuove a seconda delle argomentazioni proposte dagli alunni. Domande più strutturate sono state presentate solo per raccogliere informazioni finalizzate a far emergere temi non sufficientemente esplorati. Gli interventi del conduttore hanno riguardato essenzialmente la consegna del tema e l’eventuale rilancio. Altre tipologie di domanda, utili a gestire la discussione di gruppo, sono state le feel questions, cioè domande dirette che chiedono personalmente al partecipante un’opinione o un’esperienza. Sono state utilizzate anche le anonymous questions, domande indirette, che usano forme impersonali per non coinvolgere direttamente il gruppo; poi ancora le steering questions ovvero domande di richiamo che riportano l’attenzione sull’oggetto centrale dopo frequenti divergenze. E infine le testing questions, domande di controllo per verificare la stabilità di un concetto, poste fingendo di non aver compreso o di non conoscere l’argomento oggetto del focus. Le strategie di risposta sono state orientate alla spontaneità, anche se il confronto all’interno del gruppo, in particolare in quello di Rivoli, ha prodotto meccanismi di desiderabilità sociale. Qualche alunno ascoltava con ammirazione le risposte degli altri intimidendosi nel momento in cui avrebbe dovuto fornire una risposta personale durante la sollecitazione della guida del gruppo. Dopo la fase introduttiva, la partecipazione alla discussione è cresciuta e le risposte hanno rivelato una reciprocità propria della strategia cooperativa. Si è innescato quello che David Stewart definisce come l’“effetto palla di neve”, cioè l’opinione di uno studente ha trascinato a catena le risposte degli altri. In particolare ciò è accaduto in occasione di una domanda a cui avrebbero dovuto rispondere gli alunni singolarmente: “che cosa ti ha lasciato, in quanto a ricordi o a momenti significativi, una sperimentazione così innovativa?”.

fatto ridondante si è manifestato nella ripetizione da parte di quasi tutti gli alunni della risposta data da un partecipante interrogato per primo. C’è da evidenziare, però, che il soggetto interrogato incarnava il ruolo di opinion leader del gruppo e riscuoteva simpatia, ammirazione e consenso da parte dei compagni, ragion per cui si è creato un meccanismo di desiderabilità sociale che ha innescato il fenomeno descritto.

Il dibattito stimolato durante il focus si è risolto mediante due processi sociocognitivi: il primo è stato caratterizzato da un processo di trasparenza, che ha portato a dibattere un argomento fino a rendere palese l’eventuale accordo o disaccordo; il secondo, invece, è stato funzionale alla ricerca del consenso, raggiunto attraverso la negoziazione sociale e la dichiarazione da parte dei singoli partecipanti di modelli interpretativi efficaci, in grado di spiegare come le apparenti divergenze erano appunto aspetti complementari di uno stesso fenomeno. Ci sembra opportuno segnalare un unico caso di divergenza di opinione di una studentessa che non riteneva interessante esplorare le tecnologie, che usava la rete solo qualche volta per i compiti, ma che preferiva trovare possibili approfondimenti nei testi piuttosto che in risorse on-line. La bambina non presentava segni di timidezza, anzi, era molto decisa e volenterosa nel fornire un’opinione divergente rispetto a quella del gruppo, che invece si è mostrato incline ad accettare positivamente la presenza quotidiana di tutti i media digitali che la guida proponeva al loro giudizio durante il focus. La prima discussione di gruppo è stata caratterizzata dalla presenza massiccia degli ex alunni di Rivoli, che, a distanza di due anni dall’attività innovativa svolta in classe, hanno riportato testimonianze e resoconti molto dettagliati di quanto vissuto. La seconda discussione ha rilevato una presenza di ex alunni (di Novi Ligure) numericamente meno importante, ma che ha comunque dato un apporto significativo alla raccolta dei dati post sperimentazione. La terza focus group discussion, avvenuta presso il 1° Circolo di Novi Ligure, è stata fortemente contraddistinta dalle caratteristiche peculiari dei suoi partecipanti. Il target di riferimento delle discussioni era composto da bambini di 6 anni. L’incontro con la classe di Novi Ligure di prima elementare si è svolto come un dialogo a più voci, avviato spontaneamente dall’imprevedibilità dei giovanissimi interlocutori, senza che la guida ponesse la domanda di rito per iniziare. Il conduttore ha strutturato la discussione di gruppo escludendo di privilegiare un dialogo tematico precostituito da sottoporre ai piccoli partecipanti. Le microinterviste effettuate con ogni singolo componente della classe si succedevano in modo casuale e non continuativo; la guida forniva uno stimolo a un bambino e subito estendeva l’invito a partecipare ai compagni vicini, per non creare senso di insoddisfazione tra i bambini e per far parlare gli alunni proprio nel momento in cui lo desideravano. Gli scolari di prima elementare erano ben disposti a fornire opinioni e a esprimere pareri,
e non è stato ritenuto opportuno porre freni o regole ai loro discorsi; soltanto quando si riconosceva che l’emotività procurava piccoli blocchi, il conduttore interveniva per stimolare la ripresa naturale del discorso con una domanda semplice, alla quale sapeva già che i bambini avrebbero fornito una risposta efficace. Una sorta di stimolo-risposta entrambi forniti dal conduttore, dissimulati attraverso la proposta di una domanda, affinché acquisissero sicurezza per continuare l’interazione durante la discussione. Ai bambini che manifestavano un desiderio maggiore di raccontare e meno timidezza si proponeva un set di domande anche molto complesse quali “che cos’è Internet?”, “che cosa si può fare con Internet?” e “che cos’è un computer?” o “che cos’è Facebook?”. Il campione, nonostante la complessità delle domande, non mostrava nessuna perplessità, anzi, azzardava risposte spesso esatte. Forse ripetevano concettualizzazioni fatte dagli adulti, forse ascoltate in famiglia e non interiorizzate, ma comunque mostravano una familiarità con Jumpc e con le tecnologie digitali in genere davvero impressionante. Molti partecipanti al gruppo di discussione gestivano con facilità il netbook: usavano il touchscreen e il mouse al contempo, la fotocamera e vari programmi per il disegno; esploravano giochi diversi simultaneamente ed erano inclini alla collaborazione all’interno del gruppo. I componenti della classe avevano strutturato un codice comunicativo che gli consentiva di avviare procedure di risoluzione collettiva dei problemi. Il singolo bambino che aveva difficoltà nella gestione del software non si rivolgeva (quasi mai) all’insegnante, ma si dirigeva direttamente verso il compagno affinché potesse aiutarlo a risolvere il problema. Il gruppo partecipava attivamente alle situazioni di disagio del singolo proponendo soluzioni per tentativi ed errori fino al superamento positivo del momento critico. Le attività proposte dal software didattico erano prevalentemente ludiche ed esplorative, orientate alla rappresentazione dello spazio e delle forme, alla comprensione dei nessi fondamentali di causa ed effetto. Tanti colori e animazioni stimolavano la curiosità e la voglia di divertimento del singolo bambino, che si relazionava con il gioco preferito a seconda delle sue inclinazioni. C’era chi sceglieva il gioco delle macchine, chi si divertiva costruendo un muro con i mattoni digitali, chi associava i colori alla frutta e alle forme, e chi prendeva cura di un cagnolino desideroso di attenzioni affettive e alimentari. E c’era chi – sorprendendo il conduttore del gruppo di discussione e perfino l’insegnante – si cimentava in un gioco altamente complesso: la gestione di un software che permetteva la costruzione di una figura animata attraverso il montaggio in sequenza di micromovimenti; dando per scontata la capacità di coordinare sincronicamente forme, spazio e movimento.

2. Incontro con gli esperti

Per un maggiore approfondimento delle tematiche trattate nei capitoli precedenti proponiamo di seguito le trascrizioni integrali delle interviste con esperti del settore.

Iniziamo con l’incontro avvenuto con Paola Limone, insegnante di scuola primaria, settore disciplinare scientifico, presso il 1° Circolo di Rivoli, Piemonte. La prima intervista risale al 1° settembre 2010: l’insegnante inizia il suo discorso raccontando di un’esperienza di formazione sulle TIC gestita da lei direttamente.

La seconda intervista proposta è stata fatta ad Antonietta Lombardi, insegnante di primaria, che da anni si occupa dell’inserimento delle TIC a scuola. L’incontro raccoglie la sua testimonianza circa l’esperienza della sperimentazione “Un computer per ogni studente” presso la scuola di Novi Ligure nell’anno scolastico 2008-2009. In particolare modo l’intervistata si soffermerà sulle attività che concretamente sono state svolti in classe, con gli alunni e con l’affiancamento dei PC. Saranno messe in rilievo anche pratiche educative finalizzate al sostegno dei bambini affetti da dislessia. Per questo particolare tipo di fenomeno, ormai molto diffuso negli ambienti scolastici, l’inserimento nella programmazione didattica di un supporto tecnologico ha dato esiti molto positivi.

Il terzo incontro è avvenuto con Giuseppe Moscato presso la sede di Firenze di indire, dove è attualmente in servizio. Grazie al suo intervento è stato possibile ricostruire il percorso cronologico che ha caratterizzato la diffusione delle TIC nelle scuole italiane.

2.1. Intervista a Paola Limone (1° settembre 2010)

Paola Limone Ben 80 insegnanti sono venuti appositamente in Piemonte per incontrarmi. Si tratta di un’esperienza vissuta due-tre anni fa: sono stata contattata da un’agenzia che si occupa di formazione tecnologica per gli insegnanti di Padova e della zona di Trento, che mi ha chiesto di poter portare gli insegnanti, in quel caso studenti, a conoscere il lavoro fatto qui in Piemonte dalla mia scuola, per poi andare anche a Genova per visitare il CNR [Consiglio nazionale delle ricerche]. Questa proposta mi ha entusiasmata molto ma anche preoccupata perché non sapevo dove sistemare tutti questi insegnanti. La mia scuola è piccola e non avevo spazio a sufficienza e quindi ho pensato subito di chiedere la
partecipazione di colleghi quali Dario Zucchini del “Majorana”, e i colleghi del circolo di Pavone Canavese, che a quell’epoca partecipavano già a progetti vari insieme a me. E quindi abbiamo preparato due incontri: uno per gli insegnanti più di area tecnico-scientifica, e l’altro per gli insegnanti di area linguistica; ci siamo ritrovati nell’auditorium dell’Istituto “Majorana” e in un altro caso in un’aula messa a disposizione dall’istituto salesiano di corso Regina Margherita. Abbiamo fatto questi due incontri in cui abbiamo raccontato in qualche modo il nostro lavoro, quale era la nostra esperienza e da quel momento sono nate delle amicizie portate avanti a distanza di anni sia in presenza che in rete.

Domanda Ormai, Paola, dopo aver promosso l’iniziativa “Un computer per ogni studente” hai maturato una grande esperienza e competenza che ti permetterà di ricoprire il ruolo di supervisore delle sperimentazioni successive. Ti chiedo se l’entusiasmo guida queste azioni (pratiche) di progressione, di innovazione e di volontà autentica di fare progresso; ma un progresso che non sia solo desiderio di un bene tecnologico o miglioramento economico. Un progresso che può essere indirizzato verso un miglioramento intellettuale, inteso come origine e fonte di cambiamento anche sociale che irrompe in ambienti sopiti dalla reiterazione di pratiche considerate di routine, risvegliando animi e condizionando comportamenti con la stessa forza di un contagio a cui non possiamo sottrarci.

PL Quello che ha mosso il nostro gruppo è stata sicuramente un’esperienza pregressa nel campo delle tecnologie applicate alla didattica, quindi da parte mia nell’area dedicata alla scuola primaria e secondaria di primo grado, il collega Dario Zucchini per quanto riguarda gli istituti tecnici. Abbiamo messo insieme interessi ed esperienze pregresse con obiettivi comuni, che erano quelli di andare a verificare quanto l’utilizzo di un computer per ogni studente potesse effettivamente dare un apporto positivo nella didattica di tutti i giorni affiancato a tutti gli altri strumenti che vengono quotidianamente utilizzati dagli insegnanti. Quindi nulla veniva sostituito, nulla veniva a mancare, ma semplicemente si aggiungeva uno strumento in più. A partire da questo abbiamo cercato, poi, presi anche dall’entusiasmo e dalla curiosità, di procedere in modo estremamente scientifico e senza lasciare nulla al caso. Perché gli entusiasmi nascono in fretta e muoiono altrettanto velocemente di fronte alle difficoltà. Volevamo che i docenti che avrebbero partecipato con noi a quest’esperienza fossero tutelati e con loro i propri allievi e le famiglie che avrebbero preso parte a quest’iniziativa; che gli insegnanti si trovassero in qualche modo una strada semplificata per poter veramente occuparsi di didattica e non dover pensare alle difficoltà quotidiane poste da strumenti non adeguati o non preparati in precedenza; o comunque che non mettessero a rischio la sicurezza dei bambini. Questa è stata la
grosso novità del nostro progetto: fare in modo di diventare un modello per altre esperienze nazionali e internazionali.

D Si tratta quindi di un modello di riferimento che può essere replicato. Un modello che ormai è stato progettato, che è andato bene e che può essere adottato come standard, come appunto abbiamo detto. Vorrei sapere se la visione di fondo che ha sostenuto questo modello può essere associata, cioè se è possibile creare un legame, una connessione, con gli ideali che animavano le scuole nuove del primo Novecento. Per “scuole nuove” intendo un ambiente dove si possa coordinare sviluppo/crescita e didattica riuscendo a fondere le tre dimensioni, considerate indispensabili per la costruzione dell’identità dell’individuo e per un sistema di apprendimento sano e vitale. Per formare il cittadino in toto e non solo per trasmettere contenuti e accertarsi che i programmi didattici vengano ultimati alla fine dell’anno. Quindi un nuovo spirito che può essere riproposto e ricondotto alla formazione digitale del cittadino attraverso la tecnologia. Secondo te tutto questo si può realizzare?

PL Si parla sempre prima di metodologie e poi degli strumenti. Partiamo dal fatto che l’insegnante deve essere motivato e convinto che un certo modo di insegnare che non sia dietro la cattedra, che non sia soltanto frontale sia quello vincente. Quindi ci riferiamo a gruppi di lavoro, a gruppi di ricerca, a cooperative learning, a problem solving, a tutto un modo di gestire l’attività della classe secondo metodologie che sono già di per sé sperimentate nel corso di questi anni e che hanno dato risultati sicuramente più che soddisfacenti. Dobbiamo attenerci all’ambito specifico di queste esperienze per parlare poi delle tecnologie. Sulla base di simili esperienze, che contemplano pratiche di questo tipo, si va a inserire lo strumento del computer per ogni allievo; sia a casa che a scuola, in modo che sia un’esperienza assolutamente positiva e vincente. In altri casi il dubbio resta perché sicuramente l’insegnante che viene forzato ad avere in classe strumenti di questo tipo dovrà in qualche modo trovarsi di fronte una difficoltà che dovrà cercare di risolvere. Però è anche vero che la forzatura può essere frustrante, può essere fonte di rifiuto e quindi il tutto potrebbe portare a dei fallimenti. Non ci sono ancora esperienze significative in questo senso. Non è stata fatta una valutazione scientifica “certificata” di progetti di questo tipo in classe, dove, purtroppo, la modalità di insegnamento applicata è ancora di tipo frontale. Le classi che qui in Piemonte hanno partecipato a questo progetto sono classi dove comunque già si lavorava con un certo stile: vale a dire che si faceva uso delle mappe concettuali, si formavano gruppi di ricerca, si facevano attività di condivisione in rete di materiale preparato dai bambini, piuttosto che dagli insegnanti, si svolgeva ricerca sui libri ma anche su Internet. La metodologia era
già orientata in qualche modo al costruttivismo. Quindi il computer per ogni studente si è inserito come un di più utile, ma assolutamente in modo naturale.

2.2. Intervista ad Antonietta Lombardi (1° settembre 2010)

Domanda Chiedo alla maestra Lombardi di raccontarmi come si è svolta la sua attività didattica durante la sperimentazione “Un computer per ogni studente” e, in particolare, di soffermarsi sul valore aggiunto delle TIC durante l’attività di insegnamento in classe.

Antonietta Lombardi Oltre al lavoro che è stato fatto da Paola, avendo io dei bambini dislessici nella mia classe e anche in altre classi parallele, ho pensato di dar loro la possibilità di utilizzare i computerini installando sui PC dei programmi, dei sintetizzatori vocali che si chiamano Balabolca e Vivotre (con una preferenza per Balabolca perché è molto più semplice da usare e non crea problemi). Ho svolto il mio lavoro in questo modo: copiavamo i testi di italiano o di storia o di scienze – purtroppo soltanto di queste tre discipline – e li digitalizzavamo; poi, i bambini ascoltavano due o tre volte con il lettore e facevano una sintesi richiesta da noi insegnanti. Oppure, dopo aver ascoltato per due o tre volte il brano con il sintetizzatore vocale, ricavavamo le parole più importanti e costruivamo una mappa concettuale. Questo per gli argomenti più semplici; per gli argomenti più complessi eravamo noi insegnanti a preparare le mappe su ciò che il docente di classe avrebbe spiegato. I bambini, tenendo la mappa davanti, ascoltavano la spiegazione e utilizzavano le mappe concettuali sia nel momento in cui l’insegnante spiegava sia nel momento in cui dovevano relazionare. In particolare questi bambini hanno difficoltà nell’organizzare verbalmente proprio le conoscenze che hanno imparato; quindi organizzare anche il discorso per loro risulta un po’ complicato. Avendo una mappa concettuale sotto gli occhi, invece, erano in grado di relazionare più facilmente. Abbiamo anche preparato le verifiche digitali in Word per le quali era previsto di rispondere sì o no; invece ho utilizzato i documenti condivisi di Google per fare dei test nei quali i bambini potevano aggiungere delle parole che erano già state indicate sotto. È stato molto più semplice utilizzare questa modalità perché una volta che finivano di fare la verifica, immediatamente veniva fornito il punteggio raggiunto, inteso come risposte esatte o sbagliate. A loro era data la possibilità di rivedere le risposte. Questo è il lavoro che abbiamo sperimentato quest’anno per la prima volta. Mentre con tutti gli altri bambini abbiamo continuato a utiliz-

8. Si tratta di Paola Limone.
9. Si riferisce a classi che non avevano i PC sui banchi di scuola tutti i giorni.
zare le mappe concettuali. Ci siamo avvalsi del supporto delle tecnologie digitali anche per lavorare con paesi stranieri (in particolare con Panama), con i quali interagivamo così: abbiamo lavorato su argomenti di scienze e di geografia, poi abbiamo fatto una videoconferenza con gli studenti stranieri utilizzando Skype su un computer fisso perché dotato di uno schermo più grande.

La collaborazione sulla mappa è stata fatta proprio con i JumPC perché CmapTools è un programma che permette di condividere in modalità sincrona una mappa10. Per il resto, oltre a quanto descritto, abbiamo svolto le attività realizzate anche nelle classi della collega Paola Limone, usando molti libri digitali. Quest’anno l’interesse per una simile esperienza si è fortemente diffuso fra i colleghi di altre classi i quali purtroppo, seppur desiderandoli, non hanno avuto a disposizione i JumPC nonostante la richiesta di poterli utilizzare per usufruire di programmi specifici, utili alle esigenze particolari degli alunni durante le attività didattiche in classe.

2.3. Intervista a Giuseppe Moscato (4 ottobre 2010)

Domanda Chiedo a Giuseppe Moscato di illustrarmi quali sono state le tappe più importanti che hanno caratterizzato l’inserimento delle TIC a scuola. E quali sono i momenti significativi che hanno condotto alla situazione odierna: ovvero come si è evoluto il percorso sulle tecnologie dell’informazione per arrivare a oggi, con l’attuale politica di inserimento delle LIM a scuola.

Giuseppe Moscato Oggi siamo nel 2010, ma, andando a ritroso nel tempo, possiamo collocare la prima esperienza già al 2006. È andata grosso modo così: questo istituto11 ha sempre avuto una grande attenzione per le novità. All’epoca c’era il nostro direttore12 che adesso lavora con la Gelmini e con il Ministero della Pubblica Istruzione. È una persona sempre molto attenta alle novità per cui succede anche che ci contattino da fuori: proprio perché è importante sapere che il nostro istituto non opera solo a livello nazionale, ma anche a livello internazionale. È molto facile venire a conoscenza di attività o di iniziative che avvengano oltreoceano, così come nel caso specifico della lavagna. Per cui abbiamo avuto, diciamo così, un primo contatto con la Smart, che è una società che fabbrica lavagne digitali. La cosa importante è che i loro “progettisti” sono degli insegnanti, per cui c’è stato subito un grande interesse da parte dell’istituto per i loro pro-
dotti. Infatti non si trattava della Samsung o dell’Hitachi – insomma, del mar-
chio di turno – ma di insegnanti che avevano lavorato con quei prodotti. È nato
ovviamente un grande interesse, e quindi abbiamo iniziato ad avere un rapporto
diretto con queste persone, che sono venute da noi in sede. All’epoca abbiamo
avuto un primo problema scolastico molto importante, per il quale abbiamo ri-
tenuto che l’uso della lavagna si prestasse in maniera particolare a realizzare la
“scuola a distanza”, intesa non come e-learning, ma come scuola vera e propria.
Nel caso specifico si trattava di una scuola di Marettimo, un’isola delle Egadi,
dove c’erano due studenti in tutta l’isola. Quindi l’idea è stata quella di mettere
gli studenti in collegamento con una scuola di una città. Poiché la classe era del
primo anno, sarebbe stato difficile per noi gestire un inserimento in una scuola
siciliana, nel caso specifico. Per cui ci siamo organizzati contattando una scuola
fiorentina e abbiamo creato questo progetto, nel quale si faceva scuola a distanza
con le lavagne. Vuol dire che i ragazzi di Marettimo scrivevano sulla lavagna, e
ciò che scrivevano appariva sulla lavagna della classe di Firenze; gli studenti di
Firenze intervenivano sulla lavagna che avevano in classe e il risultato era visibile
nella scuola di Marettimo. Tutto questo lavoro è stato documentato da una testi-
monianza video che racconta bene il modo in cui si lavorava: ad esempio, le di-
chiarazioni del direttore di allora e il lavoro dei docenti mostrano subito quanto
si parli di lavagne e quanto essa sia stata una svolta di fondamentale importanza
per quella situazione. Non c’era soltanto la parte verbale o l’utilizzo di strumenti
tipici impiegati nell’e-learning, dal forum alla posta elettronica, cioè strumenti
di comunicazione on-line asincroni, ma un intero modo di interagire in modo-
lità sincrona, con la quale abbiamo lavorato moltissimo. È nata in questi termini
la collaborazione con gli esperti della Smart durante la quale, all’inizio, ci sono
stati di grande aiuto. Hanno illustrato tutti i software che utilizzavano per attuare
questa operazione di lavoro in contemporanea tra le due lavagne a distanza. Così
è iniziata la nostra attività sulla lavagna, partendo da problemi oggettivi e non
come è avvenuto in tanti altri casi nei quali è stato fatto ricorso alle lavagne per
seguire la moda del momento. Nel contributo video è molto chiaro come in quella
situazione lo strumento della lavagna fosse stato indispensabile, di fondamentale
importanza, perché era l’elemento comune alle due classi e la soluzione funzio-
nale alla situazione di disagio vissuta. Questo è stato l’approccio alle lavagne, e
io mi sono ritrovato all’interno di questo progetto perché venivo dalla scuola, e
forse più di altri potevano avere le idee chiare, quantomeno la propensione a capire
quanto si potesse usare la lavagna in situazioni concrete.

Nel 2006-2007 c’è stato il primo “Digiscuola” che era un altro progetto mini-
steriale nel quale erano inserite anche le lavagne. Il nostro istituto è stato impe-
gnato in un grande lavoro consistito in molto di più che la semplice formazione
e la dimostrazione dell’uso della lavagna, perché stavamo iniziando un processo
che era ancora ai primordi, un’azione orientata alla ricerca e allo studio di applicazioni adeguate alle potenzialità dello strumento.

A dire la verità, le lavagne all’epoca erano ancora a un livello di struttura e di installazione abbastanza artigianali. Prevedevano delle lavagne di formato più piccolo di quelle che circolano ora, e poi c’erano dei proiettori che andavano su supporti che erano collocati davanti; e permanevano ancora tutti i problemi relativi all’ombra. Ma nonostante ciò, rimaneva comunque un oggetto molto interessante. Si presentavano inoltre diverse soluzioni che permettevano a ogni docente di rapportarsi a questo nuovo oggetto perché l’uso che poteva esserne fatto era ancora da scoprire; era un oggetto ancora a livello pionieristico. Nel 2007 cominciavano a essere presenti dei modelli di lavagne che venivano installate con un braccio fissato su di un muro. Ciò comportava dei problemi di ombre perché il proiettore aveva comunque bisogno, ancora in questa fase, di una certa distanza. Invece, con le ultime tecnologie, il proiettore è vicinissimo, ha un angolo di incidenza molto forte e quindi riesce a proiettare sulla superficie anche stando molto vicino, e ciò significa anche riduzione dell’ombra [...]. Questi sono i concetti più importanti riguardo le lavagne e il loro inserimento. Bisogna sapere che, a livello nazionale, sono state date delle indicazioni precise, e sono stati dati anche dei limiti che vincolano l’utilizzo che delle lavagne viene fatto dai singoli istituti. È stato scritto una specie di vademecum. Insomma bisogna rispettare delle regole come, ad esempio, la prescrizione che impone di posizionarla fissa al muro; la lavagna non deve stare su di un treppiedi ma in classe e non nel laboratorio di informatica. Quindi tutto ciò che è connesso alla formazione che l’accompagna è in funzione della lavagna usata in classe. Vi è, inoltre, un aspetto tecnico ancora abbastanza presente e di cui di solito si devono occupare i produttori che installano le lavagne, mandando degli operai, dei tecnici, o comunque degli esperti. Bisogna fare in modo che vengano acquisite le basi, ovvero che ogni insegnante sappia gestire tutte le operazioni preliminari all’attivazione della lavagna come, ad esempio, accendere il proiettore, il computer, collegare bene le prese necessarie alle porte di accesso ecc. Per quanto riguarda i software, ogni marchio ha il suo specifico. Ora sto per parlare di un argomento trasversale; perché la lavagna ha due grosse caratteristiche principali: una è quella della condivisione comune con il gruppo classe, e l’altra è la multimedialità. La prima caratteristica apparteneva anche alla vecchia lavagna di ardesia, soltanto che adesso, tale caratteristica (la condivisione) è amplificata dalle grandi potenzialità della lavagna multimedialc. C’è però un’altra cosa importante che non va dimenticata: il tipo di interazione, perché, in un senso molto generale, l’interazione è interpretata attraverso il nostro background personale, che è di tipo informatico, quindi legato al computer con il mouse, ragion per cui la caratteristica dominante è il rapporto uno a uno che si ha con la tastiera e il monitor.
Ora assistiamo a un cambiamento di fondamentale importanza: si interagisce direttamente con le mani o con la penna sullo schermo, che fa anche da schermo di proiezione. Allo stesso tempo, però, si può lavorare come se fosse un computer, non più con il mouse ma con la penna o con le dita. Quindi ha una doppia natura: l’oggetto può fungere sia come una periferica di input che come una di output. E ancora, non si considera più l’utente/studente che interagisce con il computer, ma l’utente/studente con il computer e il supporto multimediale insieme ad altre 25 persone. Tutto questo cambia completamente le cose: significa che quelle azioni che di solito venivano fatte sulla lavagna di ardesia sono moltiplicate all’ennesima potenza sul piano della multimedialità. L’esercizio che si faceva alla lavagna come, ad esempio l’esercizio di matematica, il calcolo o le espressioni, adesso si fa con la lim, che ha avuto un largo impiego appunto per la matematica. Il supporto lavagna – chiamiamolo lavagna perché è questo il nome con il quale è stato diffuso, ma è in realtà un supporto di lavoro collettivo – ha persino recuperato altre materie che ormai non trovavano nessun beneficio dalla lavagna, nemmeno quella di ardesia. Ad esempio l’italiano, la storia, le materie cosiddette “letterarie” avevano poco a che fare con la lavagna. Ora invece, insieme a disegno e arte, sono state recuperate tutte. Diciamo che resta predominante il ruolo che la caratterizza come un oggetto di supporto con il fine di esporre dei temi, nel senso che risulta di aiuto all’esposizione per il docente, e di esercitazione, e ha ampliato i campi della sua applicazione grazie alla multimedialità. Si è aperta a tutte le discipline e, soprattutto, ha dato una rinfrescata anche al libro, inteso come unico supporto cartaceo rimasto da solo tra il docente e lo studente. Questa nuova situazione apre altri scenari che non possono ricondursi soltanto all’idea di prendere in prestito le modalità che provengono dalla lavagna di ardesia per poi sommarle, semplicisticamente, alle potenzialità della multimedialità. Questo processo innovativo d’altro canto non è semplice, perché ci sono i problemi che ho esposto precedentemente: l’abitudine a considerare questo nuovo tipo di rapporto con un nuovo oggetto, con un modello già interiorizzato, più diretto, che considera il singolo in associazione con il computer e basta.

La presenza in classe della lim, inclusa tra le tecnologie dell’informazione e della comunicazione, arricchisce lo scenario nel quale di solito l’insegnante si trova a gestire la comunicazione. Come cambiano il rapporto, la relazione e le pratiche comunicative quando si ha la possibilità di interagire in classe attraverso la mediazione di uno strumento digitale come la lavagna interattiva multimediale?.

Per il docente si presenta la problematica della comunicazione in quanto l’oggetto lavagna è appunto uno strumento di comunicazione. Prima il docente
aveva a disposizione la parola, il libro; qualcuno usava la ricerca, ma solo in qualche caso. Quanto all’uso della ricerca o di altre tipologie didattiche, si trattava di risorse di carattere occasionale. Per la maggior parte degli insegnanti il quotidiano, l’ordinario era rappresentato dal libro e dalla parola; in questo modo, invece, si sommano il libro, la parola, la multimedialità, Internet e il mondo intero. Puoi fare una ricerca sul momento e costruire una conoscenza in maniera immediata. Tra l’altro, ciò avviene raccogliendo le sensibilità, le percezioni, le capacità di varie persone che a loro modo possono apportare un contributo personale in quel contesto. La lavagna mette insieme le diverse capacità e quindi di sicuro fonde fra di loro una molteplicità di cose, di questioni che già sono state intuite e studiate, e ne consente altre che ancora sono tutte da esplorare. Io parlo per esperienza personale: ricordo di essermi trovato con il mio gruppo di lavoro a fare un filmato per la formazione, ed eravamo in una classe dove gli insegnanti dovevano tenere una lezione sull’ermetismo per mostrare come l’uso della lavagna potesse facilitare l’interdisciplinarietà. Quello che abbiamo capito mentre eravamo lì, lavorando sul posto, è che in una giornata sono state affrontate tante di quelle questioni che se non avessimo avuto la lavagna, avremmo impiegato un paio di mesi; invece abbiamo toccato tutti i vari aspetti in una sola giornata, grazie alla lavagna. Per realizzare una situazione del genere in classe, con gli alunni, ci sarebbero voluti un paio di mesi. La lim accorcia i tempi, non solo di esposizione dell’argomento ma anche dell’apprendimento perché se avessi spiegato a voce certi concetti, con la sola parola, non avresti potuto realizzare tutto così in breve tempo. Poi si aggiunge che bisogna verificare se tutti hanno capito, e che il docente deve essere bravo, e non tutti lo sono, perché non tutti sono capaci di spiegare dei concetti complessi; loro stessi hanno bisogno di tornarci più di una volta. Invece, ricorrendo all’esempio pratico del filmato che fu mostrato durante quel lavoro, abbiamo avuto un buon risultato in tempi brevi: in particolare abbiamo lavorato sull’ermetismo, Ungaretti, periodo storico, Prima guerra mondiale e filmato della Prima guerra mondiale. Tutto in un solo momento. Non ho avuto bisogno di contestualizzarlo, ho soltanto fatto vedere un filmato. I ragazzi sono abituati alla grammatica televisiva, anche se soltanto a livello metacognitivo; gli appartiene tranquillamente a tal punto che in dieci minuti si sono resi conto di che cosa si stesse parlando. Avendo già visto dei filmati di quel genere, rimettevano in gioco una serie di conoscenze che già avevano acquisito in altre occasioni. Perciò vedere il poeta che parla con la sua voce che fa da sottofondo, e in primo piano il filmato della guerra mondiale mi ha permesso di ridurre i tempi. Questo episodio che ho raccontato era uno dei tanti possibili.

Sicuramente, superando il luogo comune che è comunque vero, la lezione risulta essere più interessante con la lim, insomma, più accattivante, motivante, e in questa modalità offre molte occasioni di riflessione.
Per quanto riguarda il discorso dei software, c’è da dire che si lavora con una superficie, senza una tastiera, anche se, nei casi in cui si deve scrivere un indirizzo web, si può ricorrere alla tastiera sulla lavagna. È in arrivo anche la tastiera senza fili che permette di scrivere dal banco e questa è un’altra novità che non era stata prevista. Diciamo che sono tutte migliorie che vengono fuori in itinere, sperimentando l’oggetto in classe.

Ma la tastiera sarà un dispositivo accessorio alle lavagne fornito a tutti gli alunni, seduti ai loro banchi?

No, è come il gesso. Prima si aveva il gesso, in classe: chi andava alla lavagna prendeva quel gesso. In questo caso prenderà la tastiera. Ci sono anche i risponditori per i quiz, e cose di questo genere. Ma dal nostro punto di vista non ci sembra che i rapporti tra docente e studente cambino in maniera particolare o comunque che implichino cambiamenti rilevanti nell’ambito dell’apprendimento. Può funzionare dal punto di vista della competizione, come chi arriva prima a saper dare la risposta; però abbiamo l’impressione che non sia una cosa fondamentale e rivoluzionaria. Invece, la nuova possibilità d’interazione che offre è molto più rivoluzionaria: poter dire “ci metto il mio dito sopra a quella grande superficie e insieme al mio c’è quello del docente e del mio compagno”. È questo che diventa molto più interessante.

Quali sono le caratteristiche principali del software creato per essere installato nelle L1M?

Il software è come tutti quelli che hanno la logica fondamentale del drag and drop. Quindi una serie di operazioni che normalmente si facevano aprendo una finestra e compiendo tre o quattro passaggi devono essere tutte ridotte; per cui si trascina l’oggetto dentro un altro e quell’azione fa esplodere due o tre funzioni, detto sommariamente. Ora bisognerebbe andare nello specifico, ma è importante sottolineare l’azione del trascinamento che è possibile compiere attraverso lo schermo. La pagina virtuale che produci durante una spiegazione diventa una pillola di conoscenza, perché puoi tranquillamente salvare tutto quello che hai prodotto, e chi già utilizza abitualmente il computer ritroverà tutti i vantaggi del pc anche usando la lavagna.

Questo, grosso modo, è quanto si può dire sul progetto L1M e su quello che è stato il relativo impatto. I software sono tutti progettati ex novo perché devono essere pensati per la lavagna. Per capire di che cosa si tratta possiamo immaginarci PowerPoint come software di riferimento, proprio perché consente tutte le funzioni: i collegamenti, la composizione del testo, le funzioni per disegnare. La conoscenza di PowerPoint è così largamente diffusa perché è un programma
pensato per essere usato con il pc, quindi con il mouse soprattutto, e con la tastiera. Nel nostro caso, tutto ciò si modifica e quel tipo di risultato, le pagine su cui scrivere, l’attivazione dei link, si ottiene senza tastiera. Si possono importare le immagini, ma bisogna lavorare con le dita, con azioni di \textit{drag and drop}. In sostanza vengono recuperate tante azioni che prima non erano considerate, ma che esistevano […]. Per cui anche la ricerca dei software è sempre orientata verso questa direzione, pur essendo ancora in fase sperimentale. Allo stesso tempo, il software deve essere facile da usare per il docente; perciò, proprio il fatto che assomigli a PowerPoint ha aiutato molto, perché molti docenti lo conoscevano già.

Principalmente ci sono due tipi diversi di lavagne: la Smart è caratterizzata dal fatto che la superficie è concepita per essere premuta; un altro modello, più funzionale e migliore, è quella magnetica e a raggi infrarossi. Quella a pressione ha lo svantaggio che il punto di pressione non è mai preciso e agisce sempre su un’area abbastanza estesa. Invece con la tecnologia a raggi infrarossi o magnetica si può andare più sul dettaglio e questo implica la possibilità di usare anche software molto complessi come quello della geometria, cosa che invece non andava bene usando il modello Smart che è risultato più adatto alla scuola primaria. Anche il tipo di attività didattiche sono ideate pensando che alla base c’è sempre la logica della programmazione di oggetti. È in questa eccezionale possibilità di spostare, montare, rimontare che sta il segreto di un simile strumento […]. Dunque quest’operazione è ancora soltanto di diffusione, non possiamo dire che la lavagna sia a regime, possiamo soltanto dire che è arrivata in certe realtà scolastiche. Cominciano ad abbassarsi i prezzi, ma c’è ancora molto da studiare dal punto di vista anche della configurazione dell’oggetto. Ci sono margini di miglioramento: è uno strumento che ha ancora bisogno di un computer esterno e in ambito software ancora tanti standard non sono comuni.

\textbf{D} Data la sua esperienza sul campo con l’attività di insegnamento, mi piacerebbe sapere che cosa pensa di un possibile confronto tra quello che lei mi ha raccontato, quindi un approccio didattico che porta la lavagna in classe, con un altro scenario di riferimento. Mi riferisco in particolare alla sperimentazione che c’è stata in Piemonte, a Rivoli in una scuola primaria, gestita da Paola Limone e Dario Zucchini; che ha portato in classe un computer per ogni bambino. Dove per un anno intero i bambini hanno lavorato in classe con i \textit{netbook} JumpC Olidata, insieme all’insegnante, ma senza la \textit{LIM}.

\textbf{GM} Ora sto lavorando a un progetto\footnote{L’intervistato fa riferimento alla sperimentazione ArdesiaTech che ha coinvolto alcune classi di scuola primaria dell’istituto “Baccio da Montelupo” Fiorentino che hanno avuto a disposizione in classe per la di-} importante in cui è prevista sia la lavagna che i \textit{notebook}, però è una cosa alla quale ancora si deve arrivare. Il “problema”,

\footnotesize

\textit{APPENDICE}

D Si possono fare delle mappe concettuali?

GM Sì, certo, si può fare una didattica multimediale un po’ vecchia, nel senso che è quella che si è sempre fatta sin dai tempi di Berlinguer: ipertesti e mappe concettuali. Invece si vuole andare verso cose più complesse come il trattamento dell’immagine.
Glossario dei principali termini informatici e specialistici

Apprendimento cooperativo Apprendimento caratterizzato da un approccio di tipo sociale. La lezione frontale tradizionale, funzionale alla trasmissione passiva delle conoscenze, è abbandonata in favore della valorizzazione di un contesto di apprendimento dinamico, a cui partecipare come soggetti attivi in stretto contatto con i gruppi dei pari, e nel quale il docente assume il ruolo di guida tutoriale.

Blended (learning) Sistema di apprendimento misto caratterizzato dallo svolgimento dell’attività didattica in presenza e on-line. La massiccia diffusione dei media digitali ha incrementato notevolmente l’impiego di questo modello didattico.

Blog In informatica, e più propriamente nel gergo di Internet, un blog è un diario in rete. Il termine è il risultato della contrazione dell’espressione web-log, ovvero “traccia su rete”. Il fenomeno ha iniziato a prendere piede nel 1997 negli Stati Uniti. Il 18 luglio 1997 è stato scelto come data di nascita simbolica del blog, prendendo a riferimento il sviluppo del software che ne permette la pubblicazione per opera dello statunitense Dave Winer (si parla di proto-blog), mentre il primo blog è stato effettivamente aperto il 23 dicembre dello stesso anno grazie a Jorn Barger; un commerciante appassionato di caccia che decise di aprire una propria pagina personale per condividere i risultati delle sue ricerche sul web riguardo al suo hobby. Nel 2001 è divenuto di moda anche in Italia, con la nascita dei primi servizi gratuiti dedicati alla gestione di blog.

Chat Il termine (in inglese, letteralmente, “chiacchierata”) viene usato per riferirsi a un’ampia gamma di servizi sia telefonici sia tramite Internet; complessivamente, sono quelli che i paesi di lingua inglese designano di solito con l’espressione on-line chat, “chat in linea”. Questi servizi, anche piuttosto diversi fra loro, hanno tutti in comune due elementi fondamentali: il fatto che il dialogo avvenga in tempo reale, e il servizio possa mettere facilmente in contatto perfetti sconosciuti, generalmente in forma essenzialmente anonima. Il “luogo” (lo spazio virtuale) in cui la chat si svolge è chiamato solitamente chatroom (letteralmente “stanza delle chiacchiere”), detto anche channel (“canale”), spesso abbreviato in chan.

Comunicazione asincrona Forma di comunicazione tra uno o più interlocutori che non avviene in simultanea, ma in momenti differenti. Di solito tale interazione si svolge attraverso lo scambio di e-mail tra studenti, docenti e tutor e la partecipazione a forum.
Comunicazione sincrona Forma di comunicazione caratterizzata dalla presenza di uno o più interlocutori che avviene in simultanea, ovvero nello stesso momento. La comunicazione sincrona si attua quando gli interlocutori sono contemporaneamente collegati a un ambiente digitale per interagire tra di loro. Ambienti tipicamente sincroni sono la chat e la videoconferenza.

Device Con questo termine indichiamo genericamente un qualsiasi oggetto elettronico fisso o portatile: ad esempio pc, netbook, e-book, tablet, smartphone, banco interattivo.

E-mail Abbreviazione di electronic mail (“posta elettronica”), un servizio Internet grazie al quale ogni utente può inviare o ricevere dei messaggi. È l’applicazione Internet più conosciuta e più utilizzata attualmente. La sua nascita risale al 1972, quando Ray Tomlinson installò su arpanet un sistema in grado di scambiare messaggi fra le varie università, ma chi ne ha realmente definito il funzionamento si chiamava, forse non a caso, Jon Postel. É la controparte digitale ed elettronica della posta ordinaria e cartacea. A differenza di quest’ultima, il ritardo con cui arriva dal mittente al destinatario è normalmente di pochi secondi/minuti.

E-learning Apprendimento mediato dalle tecnologie. Nel corso del tempo il termine ha vissuto situazioni alterne nelle quali si distingueva una forte attenzione alla componente tecnica data appunto dalla presenza del mezzo tecnologico, contrapposta a una visione nella quale invece si dava importanza assoluta alla componente connessa all’apprendimento puro, con tutte le implicazioni fornite dalla letteratura di riferimento di ambito pedagogico e dalle scienze sociali.

Forum Il forum (dal latino “piazza”, “luogo pubblico d’incontro”) può riferirsi all’intera struttura informatica contenente discussioni e messaggi scritti dagli utenti, a una sua sottosezione oppure al software utilizzato per fornire questa struttura. Un senso di comunità virtuale si sviluppa spesso intorno ai forum che hanno utenti abituali. La tecnologia, i videogiochi, la politica, l’attualità e lo sport sono temi popolari, ma ci sono forum per un enorme numero di argomenti differenti. I forum vengono utilizzati anche come strumenti di supporto on-line per vari prodotti e all’interno di aziende per mettere in comunicazione i dipendenti e permettere loro di reperire informazioni. Ci si riferisce comunemente ai forum anche come board, message board, bulletin board, gruppi di discussione, bacheche elettroniche e simili. Molti forum richiedono la registrazione dell’utente prima di poter inviare messaggi e in alcuni casi anche per poterli leggere. Differentemente dalla chat, che è uno strumento di comunicazione sincrono, il forum è asincrono in quanto i messaggi vengono scritti e letti anche in momenti diversi.

Interfaccia Nel settore dell’informatica è un sistema che permette di operare in maniera intuitiva con le macchine. Si pensi ad esempio alle barre degli strumenti dei più comuni programmi di videoscrittura che rappresentano in forma iconica le funzioni e i comandi espressi attraverso metafore che richiamano oggetti di uso comune: le forbici (“taglia”), la stampante, il pennello (“copia formato”), il desktop e il cestino (“elimina
file”). L’interfaccia, come dice il termine stesso, si “pone in mezzo” per semplificare due linguaggi diversi.

Learning by doing L’espressione significa letteralmente “imparare facendo”. È una strategia didattica basata sull’apprendimento mediato dall’esperienza. Il *learning by doing* è congeniale alla dimensione esplorativa e interattiva offerta dalla rete e spesso viene usato nelle proposte più evolute dell’*e-learning*.

LIM La lavagna interattiva multimediale è un dispositivo elettronico avente le dimensioni di una tradizionale lavagna didattica, sul quale è possibile disegnare usando dei pennarelli virtuali. Tipicamente è collegata a un pc, del quale riproduce lo schermo. Permette quindi di mantenere il classico paradigma didattico centrato sulla lavagna, estendendolo con l’integrazione di multimedia, l’accesso a Internet e la possibilità di usare software didattico in modo condiviso.

Motore di ricerca Sistema automatico che analizza un insieme di dati spesso da esso stesso raccolti e restituisce un indice dei contenuti disponibili classificandoli in base a formule matematiche che ne indichino il grado di rilevanza data una determinata chiave di ricerca. Uno dei campi in cui i motori di ricerca trovano maggiore utilizzo è quello dell’*information retrieval* (per il reperimento mirato di informazioni in ambito elettronico) e nel web.

Multimedialità Con questo termine si indica la possibilità di veicolare più codici comunicativi contemporaneamente all’interno dello stesso messaggio. Il linguaggio testuale si fonde con quello verbale e iconico consentendo di fruire attraverso il medesimo oggetto di più linguaggi comunicativi: testo, immagini, suono e video.

Penna ottica Dispositivo collegato a un computer che individua il passaggio del pennello elettronico che disegna l’immagine su uno schermo CRT (a tubo catodico). Quando il foto-resistore inserito nella penna ottica viene colpito dal pennello elettronico, il computer riceve un segnale e può stabilire le coordinate del punto che viene disegnato in quel determinato istante perché il movimento del pennello elettronico è controllato dai segnali generati dal computer stesso.

Repository Definisce in genere l’ambiente di un sistema informatico destinato alla raccolta e alla gestione di dati e metadati. Nello specifico caso di attività didattiche che si avvalgono di risorse informatiche, il termine è riferibile alla possibilità di creare un archivio di materiali e contenuti digitali a disposizione del docente e degli alunni per essere riusati, modificati e personalizzati all’occorrenza.

Setting tecnologico Set di elementi che caratterizzano l’architettura di un’aula scolastica digitale: hardware, software e connettività. Il setting include le dotazioni tecnologiche a disposizione degli alunni e dei docenti; i luoghi e i tempi della loro fruizione; la tipologia di connessione dei *devices* tecnologici alla rete Internet o a reti locali interne alla classe.
Social network
Termine derivato dalle scienze sociali, indica la costituzione di una rete sociale di individui accomunati da legami parentali o geografici. Il termine viene esteso per definire ambienti digitali di recente formazione, specifici per la condivisione di interessi, per il mantenimento e per la formazione di legami di ogni sorta, caratterizzati da contesti digitali.

TIC
Tecnologie della comunicazione e dell’informazione. La presenza pervasiva dei media digitali ha influito sulla massiccia diffusione delle TIC anche in ambiente didattico.

Touch screen
Schermo tattile ovvero dispositivo hardware che consente all’utente di interagire con un computer toccando uno schermo. Lo si può dunque considerare come l’unione di un dispositivo di output (lo schermo) e un dispositivo di input (il sistema che rileva il contatto con lo schermo stesso, ricavandone la posizione). Quest’ultimo meccanismo è alternativo all’uso di altri dispositivi di puntamento come il mouse o il **touchpad**.

USB
Universal Serial Bus, uno dei più diffusi sistemi di connessione via cavo tra computer e periferiche esterne quali memorie, stampanti, fotocamere e simili.

Web 2.0
Termine utilizzato per indicare uno stato di evoluzione del World Wide Web, rispetto a una condizione precedente. Si indica come Web 2.0 l’insieme di tutte quelle applicazioni on-line che permettono un elevato livello di interazione tra il sito web e l’utente come i blog, i forum, le chat, i **wiki**, le piattaforme di condivisione di media come Flickr, YouTube, Vimeo, i social network come Facebook, MySpace, Twitter, Google+, Linkedin, Foursquare. Ottenute tipicamente attraverso opportune tecniche di programmazione web e relative applicazioni web afferenti al paradigma del web dinamico in contrapposizione al cosiddetto web statico o web 1.0\(^1\).

Wiki
Sito web (o comunque collezione di documenti ipertestuali) che può essere modificato dai suoi utilizzatori e i cui contenuti sono sviluppati in collaborazione da tutti coloro che ne hanno accesso, come in un forum. La modifica dei contenuti è aperta e libera, ma viene registrata in una cronologia permettendo in caso di necessità di ripartire la parte interessata alla versione precedente; lo scopo è quello di condividere, scambiare immagazzinare e ottimizzare la conoscenza in modo collaborativo. Il termine “wiki” indica anche il software collaborativo utilizzato per creare il sito web.

Wireless
In informatica, il termine che deriva dall’inglese “senza fili” indica i sistemi di comunicazione tra dispositivi elettronici che non fanno uso di cavi. I sistemi tradizionali basati su connessioni cablate sono detti **wired**. Generalmente il wireless utilizza onde radio a bassa potenza, tuttavia la definizione si estende anche ai dispositivi, meno diffusi, che sfruttano la radiazione infrarossa o il laser.

Bibliografia

Anichini A., La didattica del futuro, Pearson, Milano-Torino 2012.
Biondi G. (a cura di), LIM. A scuola con la lavagna interattiva multimediale, Giunti, Firenze 2008.
Bonaiuti G., Didattica attiva con la LIM. Metodologie, strumenti e materiali per la lavagna interattiva multimediale, Trento, Erickson 2009.
Buckingham D., Media Education. Alfabetizzazione, apprendimento e cultura contemporanea, Erickson, Trento 2006.
Calvani A. (a cura di), Multimedialità nella scuola, Garamond, Roma 1996.
Id., I nuovi media nella scuola, Carocci, Roma 1999.
Id., Teorie dell’istruzione e carico cognitivo. Modelli per una scuola efficace, Erickson, Trento 2009.
Id. (a cura di), Valutare la competenza digitale, Erickson, Trento 2011.
Celi F., Romani F., Macchine per imparare, Erickson, Trento 1997.
Fare scuola nella classe digitale

Faggioli M. (a cura di), *Tecnologie per la didattica*, Apogeo, Milano 2010.

Id. (a cura di), *Fare didattica nella classe multimediale*, Giunti, Firenze 2013.

Keeney M. A., Paganelli S., Smith J. et al., *Lesson study with action research: is the 4-column writing method 4 real?*, paper presented at the Annual meeting of the Mid-Western Educational Research Association, Columbus (OHIO), October, 16-19, 2002.

Varisco M. B., Metodi e pratiche della valutazione. Tradizione, attualità e nuove prospettive, Guerini e Associati, Milano 2000.

Articoli scientifici di riferimento

Tanni N., Editoriale. Le Lavagne Multimediali Interattive (LIM) e la scuola digitale, in “Form@re”, n. 64, 1° novembre 2009, in http://formare.erickson.it/wordpress/it/2009/editoriale-60.

Rassegna stampa “Un computer per ogni studente”

Paolin C., Ma a Rivoli c’è una scuola dove l’eccellenza è elementare, in “il Venerdì di Repubblica”, 19 dicembre 2008.

Rocci C., Col computer nella cartella, in “Luna Nuova”, 10 ottobre 2008.

Romano P., Tra i banchi con il laptop “Studiamo e ci sono i giochi”, in “La Stampa”, 14 settembre 2010.

C. P., Un pc per ogni studente, in “Luna Nuova”, 29 gennaio 2010.

Zarini L., Progetto “Un computer per ogni studente”: il bilancio dopo un anno e mezzo, in “Edu-Tech”, anno 2, n. 4 aprile 2010, pp. 16-17.

Siti relativi alla sperimentazione “Un computer per ogni studente”

1° Circolo di Rivoli, Esempio di Patto con le famiglie
http://share.dschola.it/olpc/Patto%20con%20le%20famiglie/Forms/AllItems.aspx

Annunziata L., Torino, un netbook a ogni studente

A pc donato… si guarda in bocca
http://share.dschola.it/olpc/olpc.aspx

A scuola con JumpC: il computer nello zainetto
http://www.diariodelweb.it/Articolo/Tecnologia/?d=20081007&id=48803
Bartolini R., Aula 3.0: la parola ai protagonisti
http://www.pacioli.net/it/index.php?option=content&task=view&id=666

Blog su “La Stampa”

Castelli L., JumPC, il computer salta nella scuola elementare

Dighera F., Il pc “manda in pensione” i vecchi, cari, quaderni
http://www.localport.it/eventi/notizie/notizie_espanesa.asp?N=37179

Diventa realtà! Un computer per ogni studente
http://www.vocescuola.it/2008/09/13/diventa-realta-un-computer-per-ogni-studente

Ferri P., Digital technology and one to one computing in Italy. A long way to go
http://nml.bmukk.gv.at/imgs/Presenta_OCSE_Vienna_eng%20_Ferri.pdf

Intervista a Paola Limone (podcast)
http://chocolat3b.podomatic.com/entry/2010-03-25T00_00_39-07_00

Italy pupils ditch books for pcs
http://news.bbc.co.uk/2/hi/europe/7658665.stm

La vera riforma della scuola? Un pc nello zainetto!
http://blog.dschola.it/?p=102

Le competenze professionali e il valore della condivisione
http://ospitiweb.indire.it/adi/SemFeb2009_atti/Limone/sa9L_700_competenze.htm

Limone P., Mappa sulla navigazione sicura e consapevole dei minori nel web

tName=htmltext

artisticoespressiva/Italiano/percorso%2520fiaba.doc+&cd=6&hl=it&ct=clnk&gl=it

Limone P., Un computer per ogni studente
http://paolalimone.wordpress.com/article/un-computer-per-ogni-studente-dq6gp1q9gfz-2

Mettere un pc nello zainetto... e poi?

Motore di ricerca per bambini – Ricerche maestre
http://www.ricerchemaestre.it

Olidata Jumpc nello zainetto di scuola!

OLPC – A computer donato... si guarda in bocca...
http://share.dschola.it/olpc/Shared%20Documents/Recensione%20OLPC%20XO.pdf

Portale “Bambini… siete pronti a navigare”
http://www.ddrivoli1.it/siete_pronti_a_navigare/siete_pronti_a_navigare.htm
Psaila S., ict
ts pose new challenges to education worldwide
http://www.timesofmalta.com/articles/view/20081010/education/ict
ts-pose-new-challenges-to-
education-worldwide

Rassegna stampa, Governo italiano
http://rassegna.governo.it/testo.asp?id=32684413

Reality check: nerd, giocattoli, pubblicità
http://www.puntopanto.it/2008/10/reality-check-nerds-giocattoli-pubblicita

Rete di scuole Rivoli, Collegno e Alpignano. Curriculum tic e didattica
http://share.dschola.it/rivoli1/nuoveindicazioni/area%20tecnologicoinformatica/Tecno-
logie%20della%20comunicazione/Tic%20e%20apprendimento.htm

Torino: scuola, progetto “Un computer nello zainetto”
http://www.zipnews.it/2008/10/torino-scuola-progetto-un-computer-nello-zainetto

Torino: un notebook per ogni studente

Una maestra “unica” al lavoro

Un computer per ogni studente
http://www.gjc.it/2009/node/480

Un computer per ogni studente
http://share.dschola.it/olpc/jumpc.aspx

Zagami V., Gli adolescenti ci raccontano chi sono
http://www.altrascuola.it/altranuova/index.php/notizie-mainmenu-2/1-buone-nuove/430-ve-
dozero-gli-vadolescenti-ci-raccontano-chi-sono

Zagami V., Un pc a misura di bambino
http://www.altrascuola.it/altranuova/index.php/riflessioni-mainmenu-41/420-un-pc-a-mi-
sura-di-bambino

Siti relativi alla sperimentazione MARINANDO

Fuoriclasse, canale scuola-lavoro, puntata dedicata a MARINANDO

INDIRE, Scuola Lavoro
http://www.indire.it/scuolavoro/content/index.php?action=read_pagina_reg&id_cnt=6424

Mazzella R., INDIRE e SIMI: al via l’incontro di Capri
www.indire.it/content/index.php?action=read&id=1318&navig=t

Moscati G., Marinando, la scuola da frequentare dove si vive
http://www.indire.it/content/index.php?action=read&id=1496

Nettuno, network per l’università ovunque
www.consorzionettuno.it/nettuno/index.htm

La scuola... annulla le distanze entrando in rete
Siti relativi a materiali dell’Unione europea e dell’indire

Eurydice, la rete di informazione sull’istruzione in Europa
http://www.indire.it/eurydice/content/index.php?action=read_notizie&id_cnt=2956

Competenze chiave per l’apprendimento permanente. Un quadro di riferimento europeo
http://ec.europa.eu/dgs/education_culture/publ/pdf/ll-learning/keycomp_it.pdf

INDIRE
http://www.indire.it

Ministero dell’Istruzione, dell’Università e della Ricerca
http://www.istruzione.it

Unione europea
http://europa.eu/index_it.htm

Siti relativi alla LIM

Bando di gara per la fornitura di 8.000 LIM
http://www.indire.it/templates/pagineSpeciali/lim/3.html

Tutorial: Accesso Edulab e forum
http://lavagna.wordpress.com/2009/12/03/tutorial-accesso-edulab-e-forum

Vettori F., Un arcipelago di scuole e due voci che parlano
www.indire.it/content/index.php?action=read&id=1289

Wikipedia, Caratteristiche
http://it.wikipedia.org/wiki/Wikipedia#Caratteristiche

Wikipedia, Lavagna interattiva multimediale
http://it.wikipedia.org/wiki/Lavagna_interattiva_multimediale

Wikipedia, Autopoiesi
http://it.wikipedia.org/wiki/Autopoiesi
Fare scuola nella classe digitale
Tecnologie e didattica attiva fra teoria e pratiche d’uso innovative

L’inserimento delle nuove tecnologie in classe mette in discussione categorie consolidate nel tempo, che restringono da sempre i campi del fare scuola a strumenti e luoghi prestabili, come la classe, il libro e la cattedra. Riconoscere il valore aggiunto offerto dalle tecnologie digitali induce a riformulare il senso di questo fare scuola e porta in evidenza un potenziale strategico costituito da risorse didattiche che possono avere anche effetti dirompenti su una tradizione radicata e spesso restia ad accogliere le istanze di cambiamento.

I risultati della ricerca oggetto del presente Quaderno, condotta sul campo della scuola reale, hanno il merito di testimoniare – anche attraverso le voci dei diretti protagonisti – casi concreti di didattica sperimentale e di classi 2.0, in particolare nei resoconti delle fortunate esperienze di MARINANDO e di “Un computer per ogni studente”. Esse offrono un importante spunto di riflessione sugli effetti e sulle opportunità di una scuola che sia concretamente alternativa, soprattutto quando è supportata da setting multimediali anche molto avanzati e da operatori appassionati, disposti ad assecondare i cambiamenti. Ne emerge un paradigma educativo dalla fisionomia nuova, che rompe gli schemi; ormai da tempo e da più parti auspicato, ma non esente da critiche e riconsiderazioni.

Valeria Zagami è laureata in Teorie della comunicazione e ricerca applicata ai media presso l’Università “La Sapienza” di Roma. Ricercatrice nell’ambito delle tecnologie per la didattica, ha svolto numerose collaborazioni di carattere scientifico ed editoriale riguardo ai temi della progettazione di attività di e-learning, di piattaforme digitali e di webinar. Ha partecipato al progetto ministeriale Valutazione per lo sviluppo della qualità delle scuole (VSQ), coordinato dall’INVALSI e dall’INDIRE. Attualmente collabora con INDIRE ed è membro del gruppo di lavoro e di ricerca del progetto sperimentale ArdesiaTech.